Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 7.

Submission due Tue, 2015-12-15, before lecture.
Exercise 22. (The d'Alembert solution for a bounded interval)
Consider the one-dimensional wave equation on a bounded interval $(0, L)$.

$$
\begin{align*}
& \partial_{t}^{2} u=c^{2} \partial_{x}^{2} u \quad(x, t) \in(0, L) \times(0, \infty) \\
& u(0, t)=u(L, t)=0 \quad t \in[0, \infty) \tag{1}\\
& u(x, 0)=u_{0}(x) \quad x \in(0, L) \\
& \partial_{t} u(x, 0)=v_{0}(x) \quad x \in(0, L)
\end{align*}
$$

Consider the $2 L$-periodic, odd extensions U_{0}, V_{0} of u_{0}, v_{0}, i.e.

$$
\begin{aligned}
U_{0}(2 k L+x) & =u_{0}(x) & & x \in[0, L], k \in \mathbb{Z}, \\
U_{0}(2 k L-x) & =-u_{0}(x) & & x \in[0, L], k \in \mathbb{Z}, \\
U_{0}((2 k+1) L+x) & =-u_{0}(L-x) & & x \in[0, L], k \in \mathbb{Z}, \\
U_{0}((2 k+1) L-x) & =u_{0}(L-x) & & x \in[0, L], k \in \mathbb{Z} .
\end{aligned}
$$

Show that the d'Alembert solution from Exercise 20 to initial conditions

$$
\begin{aligned}
u(x, 0) & =U_{0} & & x \in \mathbb{R} \\
\partial_{t} v(x, 0) & =V_{0} & & x \in \mathbb{R}
\end{aligned}
$$

is a solution to (1) as well.

Exercise 23. (Mean values and harmonic functions)
Let $\Omega \subseteq \mathbb{R}^{d}$ be open, $u \in C^{2}(\Omega)$. Show the following.
a) Let u be harmonic in $\Omega, \overline{B_{R}(x)} \subseteq \Omega$ and $r<R$. Then

$$
u(x)=\frac{1}{\omega_{d} r^{d-1}} \int_{\partial B_{r}(x)} u(y) \mathrm{d} S(y)=\frac{d}{\omega_{d} r^{d}} \int_{B_{r}(x)} u(y) \mathrm{d} y
$$

b) Let

$$
u(x)=\frac{1}{\omega_{d} r^{d-1}} \int_{\partial B_{r}(x)} u(y) \mathrm{d} S(y)
$$

for all $\overline{B_{r}(x)} \subseteq \Omega$. Then u is harmonic in Ω.
Hint: Consider $\varphi^{\prime}(r)$ where

$$
\begin{equation*}
\varphi(r)=\frac{1}{\omega_{d} r^{d-1}} \int_{\partial B_{r}(x)} u(y) \mathrm{d} S(y) \tag{4Points}
\end{equation*}
$$

Exercise 24. (Mollifiers and an application)
Let $\Omega \subseteq \mathbb{R}^{d}$ be open, $\epsilon>0, \Omega_{\epsilon}:=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\epsilon\}$.
Consider a so called mollifier

$$
\eta \in C^{\infty}\left(\mathbb{R}^{d}\right), \quad \eta \geq 0, \quad \operatorname{supp} \eta:=\left\{x \in \mathbb{R}^{d}: \eta(x) \neq 0\right\} \subseteq B_{1}(0), \quad \int_{B_{1}(0)} \eta=1
$$

and set

$$
\eta_{\epsilon}(x)=\frac{1}{\epsilon^{d}} \eta\left(\frac{x}{\epsilon}\right), \quad \operatorname{supp} \eta_{\epsilon} \subseteq B_{\epsilon}(0), \quad \int_{\mathbb{R}^{d}} \eta_{\epsilon}=\int_{B_{\epsilon(0)}} \eta_{\epsilon}=1
$$

Let

$$
\begin{aligned}
f \in L_{\mathrm{loc}}^{1}(\Omega) & :=\left\{f: \Omega \rightarrow \mathbb{R}: \forall K \subseteq \Omega, K \text { compact }: f_{K} \in L^{1}(K)\right\} \supset L^{1}(\Omega) \\
f_{\epsilon}(x) & :=\left(\eta_{\epsilon} * f\right)(x):=\int_{B_{\epsilon}(x)} \eta_{\epsilon}(x-y) f(y) \mathrm{d} y
\end{aligned}
$$

a) Show that $f_{\epsilon} \in C^{\infty}\left(\Omega_{\epsilon}\right)$.
b) Show that $f_{\epsilon} \rightarrow f$ almost everywhere.

Hint: It holds that

$$
\lim _{r \searrow 0} \frac{1}{\omega_{d} r^{d-1}} \int_{\partial B_{r}(x)}|f(x)-f(y)| \mathrm{d} y=0
$$

almost everywhere.
c) Let $u \in C(\Omega)$ such that the mean value property

$$
u(x)=\frac{1}{\omega_{d} r^{d-1}} \int_{\partial B_{r}(x)} u(y) \mathrm{d} y \quad \forall \overline{B_{r}(x)} \subseteq \Omega
$$

holds.
Using a), show that $u \in C^{\infty}(\Omega)$.
(6 Points)
Exercise 25. (Weak derivatives)
Let $\Omega \subset \mathbb{R}^{d}$ be open and

$$
C_{c}^{\infty}(\Omega):=\left\{f \in C^{\infty}(\Omega): \operatorname{supp} f \subset \Omega \text { compact }\right\} .
$$

Let $u, v \in L_{\text {loc }}^{1}(\Omega)$ and α be some multiindex. Then v is called α-th weak derivative of u iff

$$
\forall \varphi \in C_{c}^{\infty}: \quad \int_{\Omega} u D^{\alpha} \varphi=(-1)^{|\alpha|} \int_{\Omega} v \varphi
$$

Show that
a) weak derivates are uniquely determined almost everywhere,

Hint: Consider $\left(\eta_{\frac{1}{n}} * \chi_{A}\right)$ for $A \subset \Omega_{\epsilon}$.
b) if $u \in C^{|\alpha|}$ then weak and (strong) derivatives agree.
(3 Points)

