Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 8.

Submission due Tue, 2016-01-12, before lecture.
The lecture on Tuesday, 2015-12-22 will be held. There will be no tutorials on Wednesday 2015-12-23 through Friday 2016-01-08. The next tutorials after the break take place on Wednesday, 2016-01-13 and Friday, 2016-01-15.

Exercise 26. (Compact embeddings)
A theorem from the lecture where the proof is left as an exercise is the following. Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Show the following.
a) If $X \hookrightarrow Y$, there exists $C>0$ such that $\forall \varphi \in X:\|\varphi\|_{Y} \leq C\|\varphi\|_{X}$.
b) $X \stackrel{C}{\hookrightarrow} Y \Rightarrow X \hookrightarrow Y$.
c) If $X \stackrel{C}{\hookrightarrow} Y$ and $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ is a bounded sequence in X, then $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \in Y^{\mathbb{N}}$ has a convergent subsequence in Y.
(4 Points)
Exercise 27. (Classical solutions to elliptic problems)
Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain and $A: \Omega \rightarrow \mathbb{R}^{d \times d}$ be symmetric positive definite for all x, a_{0} be nonnegative, $f: \Omega \rightarrow \mathbb{R}$ be continuous. Consider the linear space

$$
V:=\left\{u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\}
$$

Show that

$$
a(u, v):=\int_{\Omega}(A(x) \nabla u(x)) \cdot \nabla v(x)+a_{0}(x) u(x) v(x) \mathrm{d} x
$$

is a symmetric, positive definite bilinear form.
(4 Points)
Exercise 28. (Sobolev spaces)
Let $\Omega \subset \mathbb{R}^{d}$ be open, $k \in \mathbb{N}$ and $1 \leq p<\infty$. Complete the theorem from the lecture by showing the following.
a) $\left(W^{k, p}(\Omega),\|\cdot\|_{k, p}\right)$ is a Banach space.

Hint: For the Δ inequality use the $\left(l^{p}(N),\|\cdot\|_{p}\right)$ inequality.
b) $\left(H^{k}(\Omega),\langle\cdot, \cdot\rangle_{H^{k}(\Omega)}\right)$ is a Hilbert space.
c) Let $\xi \in C_{0}^{\infty}(\Omega), u \in W^{k, p}(\Omega)$. Then $\xi u \in W^{k, p}(\Omega)$.
(4 Points)

Exercise 29. (Denseness of C^{∞} in $W^{k, p}$)
Let $\Omega \subset \mathbb{R}^{d}$ be open, $k \in \mathbb{N}$ and $1 \leq p<\infty$. The denseness of C^{∞} in $W^{k, p}$ requires some more steps.
Recall that

$$
\begin{aligned}
L_{\mathrm{loc}}^{p}(\Omega) & :=\left\{u: \Omega \rightarrow \mathbb{R}: \forall K \subseteq \Omega \text { compact }:\left.u\right|_{K} \in L^{p}(K)\right\} \\
W_{\mathrm{loc}}^{k, p}(\Omega) & :=\left\{u: \forall|\alpha| \leq k: D^{\alpha} u \in L_{\mathrm{loc}}^{p}(\Omega)\right\}
\end{aligned}
$$

Let η_{ϵ} be a mollifier as in exercise 24 and let $f_{\epsilon}=\eta_{\epsilon} * f$.
a) For $f \in L_{\mathrm{loc}}^{p}$, show that $f_{\epsilon} \rightarrow f$ in L_{loc}^{p} for $\epsilon \rightarrow 0$, i.e. $\forall K \subseteq \Omega$ compact $\| f_{\epsilon}-$ $f \|_{L^{p}(K)} \rightarrow 0$ for $\epsilon \rightarrow 0$.
b) Follow that for $f \in W_{\text {loc }}^{k, p}$ we similarly have $f_{\epsilon} \rightarrow f$ in $W_{\text {loc }}^{k, p}$.
c) Consider

$$
U_{i}:=\left\{x \in \Omega: \operatorname{dist}\left(x_{i}, \partial \Omega\right)>\frac{1}{i},\|x\|<i\right\}, \quad V_{0}:=U_{2}, \quad V_{i}:=U_{i+3} \backslash \overline{U_{i+1}}, i \geq 0
$$

and a smooth partition of unity ξ_{i} subordinate to the cover V_{i}, i.e.

$$
\xi_{i} \in C^{\infty}, \quad \operatorname{supp} \xi_{i} \subseteq V_{i}, \quad 0 \leq \xi_{i} \leq 1, \quad \sum_{i=0}^{\infty} \xi_{i} \equiv 1
$$

Let $u \in W^{k, p}, \epsilon>0$. Using b), show that there exist $\epsilon_{i}>0$ such that

$$
\left\|\eta_{\epsilon_{i}} *\left(\xi_{i} u\right)-\left(\xi_{i} u\right)\right\|_{k, p} \leq \frac{\epsilon}{2^{i+1}}
$$

d) Let $v=\sum_{i=0}^{\infty} \eta_{\epsilon_{i}} *\left(\xi_{i} u\right)$. Using the definition of the ξ_{i}, show that for compact $V \subseteq \Omega$

$$
\|u-v\|_{W^{k, p}(V)} \leq \epsilon
$$

and follow that C^{∞} lies dense in $W^{k, p}$.
(8 Points)

Programming exercise 7. (Finite Difference discretizations of the Poisson equation) Consider discretizations of the Poisson equation with Dirichlet boundary conditions

$$
\begin{array}{rlrl}
-\Delta u & =f & x \in \Omega \\
u & =g & x \in \partial \Omega
\end{array}
$$

with the five point stencil for $\Omega \subset \mathbb{R}^{2}$.
For the following cases, determine and plot the (nonzero) structure of the matrix L_{h}. Remark: With matplotlib consider using spy.
a) The lecture case with $\Omega=(0,1)^{2}, h=\frac{1}{n},\left(x_{i}, y_{j}\right)=(i h, j h), i, j=0, \ldots, n$ and lexicographical linear ordering of gridpoints $(i, j) \mapsto j(n+1)+i$.
b) $\Omega:=(0, a) \times(0, b)$ with $a=n h, b=m h$ and lexicographical ordering.
c) b with a so called chess ordering. This ordering first takes the lexicographical ordering of all black checkers, i.e. $u_{i, j}$ with even $i+j$, and the white checkers, i.e. $i+j$ odd, afterwards.
d) $\Omega:=B_{1}(0)=\left\{x \in \mathbb{R}^{2}\|x\|_{2} \leq 1\right\}$ with lexicographical ordering of the interior points given as $\left(x_{i}, y_{j}\right)=(-1+i h,-1+j h)$ with $x_{i}^{2}+y_{j}^{2}<1$.

For the case of $B_{1}(0)$ we are going to implement the Shortley-Weller approximation at the boundary, i.e. taking the discretization from exercise 15 for nodes close to the boundary. That is for $\left(x_{i}, y_{j}\right)$ with $x_{i}^{2}+x_{j}^{2}<1$ but $\left.\left.x_{(} i+k\right)^{2}+y_{(} j+l\right)^{2}>1$ with $k, l \in\{-1,0,1\}$ replace the missing nodes from the 5 point stencil with $x_{i}+k \alpha_{i, j} h, y_{j}+l \beta_{i, j} h$ with $\alpha_{i, j}, \beta_{i, j} \in[0,1]$ lying on the boundary $\partial \Omega$.
a) Write Python functions to determine $\left(x_{i}, y_{j}\right) \in \Omega$ and assemble $L_{h}, K_{h}, f_{h}, g_{h}$ for given n.
b) Write a Python function to numerically solve the Poisson equation on $B_{1}(0)$ for an exact solution

$$
u=e^{x} \sin y
$$

with f, g to be computed from u.
c) Check the convergence properties with a convergence plots. Extrapolate the order of convergence.
d) Check the stability of the discretization by plotting $\left\|L_{h}^{-1}\right\|$.
(12 Points)

