

Scientific Computing I

Winter semester 2015/2016 Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 8. Submission due Tue, 2016-01-12, before lecture.

The lecture on Tuesday, 2015-12-22 will be held. There will be no tutorials on Wednesday 2015-12-23 through Friday 2016-01-08. The next tutorials after the break take place on Wednesday, 2016-01-13 and Friday, 2016-01-15.

Exercise 26. (Compact embeddings)

A theorem from the lecture where the proof is left as an exercise is the following. Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ be normed spaces. Show the following.

- a) If $X \hookrightarrow Y$, there exists C > 0 such that $\forall \varphi \in X : \|\varphi\|_Y \leq C \|\varphi\|_X$.
- b) $X \xrightarrow{C} Y \Rightarrow X \hookrightarrow Y$.
- c) If $X \stackrel{C}{\hookrightarrow} Y$ and $(\varphi_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ is a bounded sequence in X, then $(\varphi_n)_{n \in \mathbb{N}} \in Y^{\mathbb{N}}$ has a convergent subsequence in Y.

(4 Points)

Exercise 27. (Classical solutions to elliptic problems)

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain and $A : \Omega \to \mathbb{R}^{d \times d}$ be symmetric positive definite for all x, a_0 be nonnegative, $f : \Omega \to \mathbb{R}$ be continuous. Consider the linear space

$$V := \{ u \in C^2(\Omega) \cap C^0(\overline{\Omega}) : u|_{\partial\Omega} = 0 \}$$

Show that

$$a(u,v) := \int_{\Omega} (A(x)\nabla u(x)) \cdot \nabla v(x) + a_0(x)u(x)v(x)dx$$

is a symmetric, positive definite bilinear form.

Exercise 28. (Sobolev spaces)

Let $\Omega \subset \mathbb{R}^d$ be open, $k \in \mathbb{N}$ and $1 \leq p < \infty$. Complete the theorem from the lecture by showing the following.

a) $(W^{k,p}(\Omega), \|\cdot\|_{k,p})$ is a Banach space.

Hint: For the Δ inequality use the $(l^p(N), \|\cdot\|_p)$ inequality.

b) $(H^k(\Omega), \langle \cdot, \cdot \rangle_{H^k(\Omega)})$ is a Hilbert space.

c) Let
$$\xi \in C_0^{\infty}(\Omega)$$
, $u \in W^{k,p}(\Omega)$. Then $\xi u \in W^{k,p}(\Omega)$.

(4 Points)

(4 Points)

Exercise 29. (Denseness of C^{∞} in $W^{k,p}$)

Let $\Omega \subset \mathbb{R}^d$ be open, $k \in \mathbb{N}$ and $1 \leq p < \infty$. The denseness of C^{∞} in $W^{k,p}$ requires some more steps.

Recall that

$$L^{p}_{\text{loc}}(\Omega) := \{ u : \Omega \to \mathbb{R} : \forall K \subseteq \Omega \text{ compact} : u|_{K} \in L^{p}(K) \}$$
$$W^{k,p}_{\text{loc}}(\Omega) := \{ u : \forall |\alpha| \le k : D^{\alpha}u \in L^{p}_{\text{loc}}(\Omega) \}$$

Let η_{ϵ} be a mollifier as in exercise 24 and let $f_{\epsilon} = \eta_{\epsilon} * f$.

- a) For $f \in L^p_{\text{loc}}$, show that $f_{\epsilon} \to f$ in L^p_{loc} for $\epsilon \to 0$, i.e. $\forall K \subseteq \Omega$ compact $||f_{\epsilon} f||_{L^p(K)} \to 0$ for $\epsilon \to 0$.
- b) Follow that for $f \in W^{k,p}_{\text{loc}}$ we similarly have $f_{\epsilon} \to f$ in $W^{k,p}_{\text{loc}}$.
- c) Consider

$$U_{i} := \{ x \in \Omega : \operatorname{dist}(x_{i}, \partial \Omega) > \frac{1}{i}, \|x\| < i \}, \quad V_{0} := U_{2}, \quad V_{i} := U_{i+3} \setminus \overline{U_{i+1}}, i \ge 0$$

and a smooth partition of unity ξ_i subordinate to the cover V_i , i.e.

$$\xi_i \in C^{\infty}$$
, $\operatorname{supp} \xi_i \subseteq V_i$, $0 \le \xi_i \le 1$, $\sum_{i=0}^{\infty} \xi_i \equiv 1$.

Let $u \in W^{k,p}$, $\epsilon > 0$. Using b), show that there exist $\epsilon_i > 0$ such that

$$\|\eta_{\epsilon_i} * (\xi_i u) - (\xi_i u)\|_{k,p} \le \frac{\epsilon}{2^{i+1}}$$

d) Let $v = \sum_{i=0}^{\infty} \eta_{\epsilon_i} * (\xi_i u)$. Using the definition of the ξ_i , show that for compact $V \subseteq \Omega$

$$\|u-v\|_{W^{k,p}(V)} \le \epsilon .$$

and follow that C^{∞} lies dense in $W^{k,p}$.

(8 Points)

Programming exercise 7. (Finite Difference discretizations of the Poisson equation) Consider discretizations of the Poisson equation with Dirichlet boundary conditions

$$\begin{aligned} -\Delta u &= f & x \in \Omega , \\ u &= g & x \in \partial \Omega \end{aligned}$$

with the five point stencil for $\Omega \subset \mathbb{R}^2$.

For the following cases, determine and plot the (nonzero) structure of the matrix L_h . *Remark*: With matplotlib consider using spy.

- a) The lecture case with $\Omega = (0,1)^2$, $h = \frac{1}{n}$, $(x_i, y_j) = (ih, jh)$, i, j = 0, ..., n and lexicographical linear ordering of gridpoints $(i, j) \mapsto j(n+1) + i$.
- b) $\Omega := (0, a) \times (0, b)$ with a = nh, b = mh and lexicographical ordering.
- c) b with a so called chess ordering. This ordering first takes the lexicographical ordering of all black checkers, i.e. $u_{i,j}$ with even i + j, and the white checkers, i.e. i + j odd, afterwards.
- d) $\Omega := B_1(0) = \{x \in \mathbb{R}^2 ||x||_2 \le 1\}$ with lexicographical ordering of the interior points given as $(x_i, y_j) = (-1 + ih, -1 + jh)$ with $x_i^2 + y_j^2 < 1$.

For the case of $B_1(0)$ we are going to implement the Shortley-Weller approximation at the boundary, i.e. taking the discretization from exercise 15 for nodes close to the boundary. That is for (x_i, y_j) with $x_i^2 + x_j^2 < 1$ but $x_i(i + k)^2 + y_i(j + l)^2 > 1$ with $k, l \in \{-1, 0, 1\}$ replace the missing nodes from the 5 point stencil with $x_i + k\alpha_{i,j}h, y_j + l\beta_{i,j}h$ with $\alpha_{i,j}, \beta_{i,j} \in [0, 1]$ lying on the boundary $\partial \Omega$.

- a) Write Python functions to determine $(x_i, y_j) \in \Omega$ and assemble L_h, K_h, f_h, g_h for given n.
- b) Write a Python function to numerically solve the Poisson equation on $B_1(0)$ for an exact solution

$$u = e^x \sin y$$

with f, g to be computed from u.

- c) Check the convergence properties with a convergence plots. Extrapolate the order of convergence.
- d) Check the stability of the discretization by plotting $||L_h^{-1}||$.

(12 Points)