Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 9.

Submission due Tue, 2016-01-19, before lecture.
Exercise 30. (Weak derivatives)
In the lecture we already saw that functions with singularities may be contained in the Sobolev spaces $W^{k, p}$ for higher dimensions d. We consider another example of this phenomenon.
Let

$$
\Omega:=B_{1}(0)=\left\{x \in \mathbb{R}^{2}:\|x\|<1\right\} \text { and } \quad u(x):=\log \log \left(\frac{2}{\|x\|}\right)
$$

Show that $u \in H^{1}(\Omega)$.
Hint: Consider polar coordinates, as in the lecture for $\|x\|^{s}$, and use upper bounds for $\log (y), y>0$.
(4 Points)
Exercise 31. (Variational formulation of a PDE)
Let Ω be a bounded domain. Recall the PDE from the lecture

$$
\begin{aligned}
-\nabla \cdot A(x) \nabla u(x)+a_{0}(x) u(x) & =f(x) & & x \in \Omega \\
u(x) & =g(x) & & x \in \Gamma_{D} \subset \partial \Omega
\end{aligned}
$$

with $A(x)$ being symmetric, positive definite, bounded, a_{0} non-negative and bounded, and Γ_{D} having nonzero area.
As mentioned in the lecture, we can restrict ourselves to the homogeneous case $g=0$. Thus, we need only consider solutions

$$
u \in V=\left\{u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega}):\left.u\right|_{\Gamma_{D}}=0\right\}
$$

Show that u satisfies a variational formulation

$$
a(u, v)=l(v) \quad \forall v \in V
$$

with
a) l linear and bounded,
b) a symmetric, bilinear and positive.
(4 Points)

Exercise 32. (A minimization problem)
Let Ω be a bounded domain with sufficiently smooth boundary and $g: \partial \Omega \rightarrow \mathbb{R}$ be a given function. We are looking for the function $u \in H^{1}(\Omega)$ minimizing the H^{1} norm and coinciding with g on the boundary, i.e.

$$
u=\underset{v \in H^{1}:\left.v\right|_{\partial \Omega}=\gamma(v)=g}{\operatorname{argmin}}\|v\|_{H^{1}}
$$

Under what conditions can this problem be handled with a variational formulation?
(2 Points)
Exercise 33. (The pure Neumann problem)
Consider the pure Neumann problem

$$
\begin{aligned}
-\nabla \cdot A(x) \nabla u(x)+a_{0}(x) u(x) & =f(x) & & x \in \Omega \\
(A(x) \nabla u(x)) \cdot \nu(x) & =h(x) & & x \in \partial \Omega
\end{aligned}
$$

with outer normal $\nu(x)$ and A, a_{0} as above.
Show that f and h have to satisfy a compatibility condition for the existence of a solution.
(2 Points)
Exercise 34. (Application of the trace theorem)
In the lecture it was mentioned that for a Lipschitz domain Ω and $l \leq k-1$ there exists a continuous trace operator

$$
\begin{aligned}
\gamma_{l}: H^{k}(\Omega) & \rightarrow L^{2}(\Omega) & \text { such that } \\
\gamma_{l}(\phi) & =\left.\left(\frac{\partial}{\partial \nu}\right)^{l} \phi\right|_{\partial \Omega} & \forall \phi \in C^{k}(\bar{\Omega}) .
\end{aligned}
$$

Assume further that Ω has a piecewise smooth boundary and let $u \in H^{1} \cap C(\bar{\Omega})$. Show that $u \in H_{0}^{1}$ and $\left.u\right|_{\partial \Omega}$ are equivalent.
(4 Points)

