Scientific Computing I

Winter semester 2015/2016
Prof. Dr. Marc Alexander Schweitzer Sa Wu

Exercise sheet 10.

Submission due Tue, 2016-01-26, before lecture.
Exercise 35. (A boundary value problem without solution)
On the interval $[0,1]$ consider the bilinear form

$$
a(u, v):=\int_{0}^{1} x^{2} u^{\prime}(x) v^{\prime}(x) x
$$

a) What is the boundary value problem corresponding to the variational problem

$$
\frac{1}{2} a(u, u)-\int_{0}^{1} u(x) \mathrm{d} x \stackrel{!}{=} \min ?
$$

b) Show that this problem does not have a solution in $H_{0}^{1}((0,1))$.

Exercise 36. $\left(H^{1}\right.$ and $\left.H^{0}\right)$
a) Exhibit a function $u \in C^{1}([0,1])$ which is not contained in $H^{1}((0,1))$.
b) In the case of $k=0$ we have $H_{0}^{0}(\Omega)=H^{0}(\Omega)$. Exhibit a sequence $u_{n} \in\left(C_{0}^{\infty}\right)^{\mathbb{N}}$ which converges to the constant function $v=1$ in the L^{2} sense.
(3 Points)
Exercise 37. (Embeddings of l_{p})
Consider the spaces $l_{p} \subseteq \mathbb{R}^{\mathbb{N}}$ of infinite sequences satisfying the condition

$$
\|x\|_{p}:=\|x\|_{l_{p}}:=\left\|\left(x_{k}\right)_{k}\right\|_{l_{p}}:=\left(\sum_{k \in \mathbb{N}}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

Recall that the spaces $\left(l_{p},\|\cdot\|_{p}\right)$ are Banach spaces.
a) Show that $l_{1} \hookrightarrow l_{2}$.
b) Is this embedding compact?
(3 Points)

Exercise 38. (Weak divergence)
Let $\Omega \subset \mathbb{R}^{d}$ a bounded domain with sufficiently smooth boundary. For vector fields $u=\left(u_{1}, \ldots, u_{d}\right): \Omega \rightarrow \mathbb{R}^{d}$ we have, similar to the scalar case, the spaces $H^{1}(\Omega)^{d}$ as completions of the infinitely often differentiable vector fields $C^{\infty}(\Omega)^{d}$ with respect to the norm

$$
\|u\|_{H^{1}(\Omega)^{d}}^{2}=\sum_{k=1}^{d}\left\|u_{k}\right\|_{H^{1}(\Omega)}^{2} .
$$

For PDEs involving only $\operatorname{div} u:=\nabla \cdot u:=\sum_{k=1}^{d} \partial_{k} u_{k}$ it might be worthwhile to consider functions with only sufficient regularity for div.
Consider the weak divergence $w=\nabla \cdot u$ defined through

$$
\int_{\Omega} w \varphi=-\int_{\Omega} u \cdot \nabla \varphi \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

and the corresponding space $H(\operatorname{div}, \Omega)$ as the completion of $C^{\infty}(\Omega)^{d}$ with respect to the norm

$$
\|u\|_{H(\operatorname{div}, \Omega)}^{2}:=\|u\|_{L^{2}(\Omega)^{d}}^{2}+\|\operatorname{div} u\|_{L^{2}(\Omega)}^{2}
$$

a) First, we check that the definition for the weak divergence makes sense. For $u: \Omega \rightarrow$ $\mathbb{R}^{d}, \varphi: \Omega \rightarrow \mathbb{R}$ sufficiently smooth show that

$$
\int_{\Omega} \varphi \nabla \cdot u \mathrm{~d} x=-\int_{\Omega} \nabla \varphi \cdot v \mathrm{~d} x+\int_{\partial \Omega} \varphi u \cdot \nu \mathrm{~d} s
$$

b) Show that $H^{1}(\Omega)^{d} \subset H(\operatorname{div}, \Omega) \subset L_{2}(\Omega)^{d}$.
c) Show that a piecewise polynomial v is contained in $H(\operatorname{div}, \Omega)$ if and only if the components in the direction of normals $v \cdot \nu$ are continuous on the interelement boundaries.
Hint: a) and the theorem on $\varphi \in H^{k}(\Omega) \Leftrightarrow \varphi \in C^{k-1}(\Omega)$ from the lecture.
(4 Points)
Exercise 39. (Affine transformations)
In this exercise we complete a Lemma on polynomial basis functions on triangles from the lecture. Show the following.
a) The degree of a polynomial is invariant under affine transformations.
b) The image of a triangle under affine transformations is a triangle.

