Aufgabe 45: Betrachten Sie die Funktion

$$f(x,y) = xy(x+y-3).$$

- a) Bestimmen Sie die Menge der Nullstellen von f.
- b) Bestimmen Sie die Menge der kritischen Punkte von f.
- c) Klassifizieren Sie die kritischen Punkte von f nach Minima, Maxima oder Sattelpunkten.

Aufgabe 46: Sei

$$f(x_1, x_2) = x_2 \ln(x_1 + 1)$$
.

- a) Berechnen Sie den Gradienten und die Hessematrix von f.
- b) Berechnen Sie die Taylor-Entwicklung zweiter Ordnung (d.h. mit Restglied dritter Ordnung) der Funktion f aus Teil a) um den Punkt $(x_1, x_2) = (0, 0)$.

Aufgabe 47: Betrachten Sie die Gleichungen:

$$\begin{split} h(x,y,z) &:= y^2 + z^2 - 4 = 0 \,, \\ g(x,y,z) &:= x + y - 1 = 0 \,, \\ \mathbf{f}(x,y,z) &:= \left(\begin{array}{c} h(x,y,z) \\ g(x,y,z) \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \,. \end{split}$$

Geben Sie eine geometrische Interpretation der Situation an. Welche Figuren schneiden sich hier? Was ist die Schnittmenge dieser Figuren? Beschreiben Sie die Schnittmenge vollständig und geben Sie den Tangentialraum an.

Tipp: Fertigen Sie eine Skizze der Situation an!

Aufgabe 48: a) Betrachten Sie das Gravitationspotential

$$U(x) = U(x, y, z) := \frac{mG}{||x - a||} = \frac{mG}{\sqrt{(x - a_1)^2 + (y - a_2)^2 + (z - a_3)^2}}$$

eines Punktes $a\in\mathbb{R}^3$ der Masse m>0. Die positive Konstante G mit dem Wert $G=(6672\pm4)10^{-14}m^3s^{-2}kg^{-1}$ ist die Gravitationskonstante. Zeigen Sie, dass die Niveauflächen

$$\mathcal{F}_c := \{ x \in \mathbb{R}^3 : U(x) = c \}$$

von U für jedes c>0 zweidimensionale Flächen sind. Um welche Flächen handelt es sich?

b) Das Gravitationspotential zweier Punkte $a,b\in\mathbb{R}^3$ $(a\neq b)$ der Massen $m_1=m_2=m>0$ lautet

$$V(x) = V(x, y, z) := \frac{m_1 G}{||x - a||} + \frac{m_2 G}{||x - b||}$$

Sind die Niveauflächen $S_c := \{x \in \mathbb{R}^3 : V(x) = c\}$ von V wiederum für jedes c > 0 zweidimensionale Flächen?