Exercises to Wissenschaftliches Rechnen I/Scientific Computing I (V3E1/F4E1)
 Winter 2016/17
 Prof. Dr. Martin Rumpf
 Alexander Effland — Stefanie Heyden - Stefan Simon - Sascha Tölkes

Problem sheet 1

Please hand in the solutions in the exercise classes on Wednesday/Thursday November 2/3!

Exercise 1

4 Points
Let $\Omega \subset \mathbb{R}^{2}$ a polygonal domain and let $\mathcal{T}=\left(T_{i}\right)_{i=1, \ldots, I}$ be a triangulation of Ω. Prove that for a continuous function $u_{h}: \Omega \rightarrow \mathbb{R}$, which is piecewise affine w.r.t. \mathcal{T} (i.e. u_{h} is affine on each T_{i}), the surface area of the graph of u_{h} is given by

$$
\mathcal{E}\left[u_{h}\right]=\sum_{i=1}^{I}\left|T_{i}\right| \sqrt{1+\left.\left|\nabla u_{h}\right| T_{i}\right|^{2}} .
$$

Exercise 2

4 Points
Let $\Omega \subset \mathbb{R}^{n}$ and $p>1$. Consider the energy

$$
\mathcal{E}[u]=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x .
$$

(i) Compute the derivate $D \mathcal{E}[u](v):=\left.\frac{\mathrm{d}}{\mathrm{d} s} \mathcal{E}[u+s v]\right|_{s=0}$ for a test function v. What are suitable function spaces for u and v ?
(ii) Derive from $D \mathcal{E}[u](v)=0$ a partial differential equation for u.

Exercise 3

For any $N \geq 2$ and $h=\frac{1}{N}$ let

$$
\begin{aligned}
x_{i} & =i \cdot h, & i & =0, \ldots, N, \\
x_{i+\frac{1}{3}} & =x_{i}+\frac{1}{3} h, & & =0, \ldots, N-1, \\
x_{i+\frac{2}{3}} & =x_{i}+\frac{2}{3} h, & & =0, \ldots, N-1 .
\end{aligned}
$$

Consider the finite element space

$$
\mathcal{V}_{h}^{3}([0,1])=\left\{v \in C^{0}([0,1], \mathbb{R}):\left.v\right|_{\left[x_{i}, x_{i+1}\right]} \in \mathcal{P}_{3}\left(\left[x_{i}, x_{i+1}\right]\right) \forall i=0, \ldots, N-1\right\} .
$$

Here, $\mathcal{P}_{3}\left(\left[x_{i}, x_{i+1}\right]\right)$ is the set of all cubic polynomials on $\left[x_{i}, x_{i+1}\right]$. Compute the set of base functions $\left(\phi_{h}^{i}\right)_{i=0, \ldots, N},\left(\phi_{h}^{i+\frac{1}{3}}\right)_{i=0, \ldots, N-1},\left(\phi_{h}^{i+\frac{2}{3}}\right)_{i=0, \ldots, N-1} \subset \mathcal{V}_{h}^{3}([0,1])$, which satisfy $\phi_{h}^{i+\frac{k}{3}}\left(x_{j+\frac{l}{3}}\right)=\delta_{i, j} \delta_{k, l}$ for $k, l \in\{0,1,2\}$.
Hint: Split the construction of the base functions on the different intervals $\left[x_{j}, x_{j+1}\right]$.

Exercise 4

4 Points
Let $a:(0,1) \rightarrow \mathbb{R}$ be the following function:

$$
a(x)= \begin{cases}c_{1} & \text { if } x \in\left(0, b_{1}\right), \\ c_{2} & \text { if } x \in\left[b_{1}, b_{2}\right), \\ c_{3} & \text { if } x \in\left[b_{2}, 1\right),\end{cases}
$$

for $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $0<b_{1}<b_{2}<1$. Determine a weak solution $u \in H^{1}(0,1)=$ $W^{1,2}(0,1)$ of the boundary value problem

$$
\begin{aligned}
-\left(a(x) u^{\prime}(x)\right)^{\prime} & =0 \quad \forall x \in(0,1), \\
u(0) & =0 \\
u(1) & =1 .
\end{aligned}
$$

