Exercises to Wissenschaftliches Rechnen I/Scientific Computing I ($\mathrm{V}_{3} \mathrm{E}_{1} / \mathrm{F}_{4} \mathrm{Er}$)
 Winter 2016/17
 Prof. Dr. Martin Rumpf
 Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

 Problem sheet 10

 Problem sheet 10}

Please hand in the solutions on Tuesday January 17!

Exercise 31

2+4 Points
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipschitz boundary. Consider the Neumann boundary problem

$$
\begin{array}{rlrl}
-\Delta u & =f & & \text { in } \Omega \\
\frac{\partial u}{\partial n}=g & & \text { on } \partial \Omega
\end{array}
$$

where $f \in L^{2}(\Omega)$ and $g \in L^{2}(\partial \Omega)$. We additionally require $\int_{\Omega} u \mathrm{~d} x=0$ to impose uniqueness of the solution since $u+c$ for a $c \in \mathbb{R}$ is a solution if u solves this boundary problem.
(i.) Show that

$$
\int_{\Omega} f \mathrm{~d} x+\int_{\partial \Omega} g \mathrm{~d} a=0
$$

is a necessary condition for the solvability of the Neumann boundary problem.
(ii.) Prove the existence of a weak solution of the Neumann boundary problem. To this end, derive the saddle point formulation and show ellipticity of a suitable bilinear form and prove an inf-sup-condition.

Exercise 32

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipschitz boundary. Consider the biharmonic equation

$$
\begin{aligned}
-\Delta^{2} u & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega, \\
\Delta u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$

where $f \in L^{2}(\Omega)$.
(i.) Use $w=\Delta u$ to formulate a saddle point formulation for the biharmonic equation. Choose u and w in $H_{0}^{1}(\Omega)$ and prove the inf-sup-condition.
(ii.) Derive a finite element formulation for the saddle-point problem and prove the discrete inf-sup-condition and V_{h}-ellipticity.

Exercise 33

4+4 Points
(i.) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipschitz boundary. Prove that H (div) is a Hilbert space with inner product

$$
(u, v)_{H(\operatorname{div})}:=(u, v)_{L^{2}\left(\Omega, \mathbb{R}^{n}\right)}+(\operatorname{div} u, \operatorname{div} v)_{L^{2}(\Omega, \mathbb{R})}
$$

for any $u, v \in H($ div $)$.
Remark: The particular task is the proof of the completeness of this space.
(ii.) Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with polygonal boundary and \mathcal{T}_{h} a triangulation on Ω. The Banach space $H(\operatorname{rot})$ is defined as the completion of $C^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ w.r.t. the norm

$$
\|f\|_{H(\mathrm{rot})}^{2}=\|f\|_{0,2, \Omega}^{2}+\|\operatorname{rot} f\|_{0,2, \Omega}^{2}
$$

where $\operatorname{rot} f=\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}$. Define

$$
\mathcal{S}_{h}=\left\{p \in L^{2}\left(\Omega, \mathbb{R}^{2}\right):\left.p\right|_{T} \in \mathcal{P}_{m}(T) \text { for } m \in \mathbb{N} \text { and } T \in \mathcal{T}_{h}\right\}
$$

Let $f \in \mathcal{S}_{h}$. Show that $f \in H($ rot $)$ if for all interior edges $E \in \mathcal{E}_{h}$ the function $f \cdot \tau_{E}$ is continuous on E, where τ_{E} is the tangent vector of E.

Exercise 34

6 Points
Let $m, n \geq 1, \Omega \subset \mathbb{R}^{n}$ be a bounded domain with polygonal boundary and \mathcal{T}_{h} be any triangulation on Ω. Prove that for any $f \in W^{m, p}(T)$ for an element $T \in \mathcal{T}_{h}$ a polynomial $g \in \mathcal{P}_{m-1}(T)$ exists such that for $k \in\{0, \ldots, m\}$

$$
|f-g|_{W^{k, p}(T)} \leq C h^{m-k}|f|_{W^{m, p}(T)}
$$

for a positive constant C depending solely on m and Ω.
Hint: Follow the proof of the approximation error estimate for the Lagrange interpolation.

