

Exercises to Wissenschaftliches Rechnen I/Scientific Computing I (V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf

Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 10

Please hand in the solutions on Tuesday January 17!

Exercise 31

2+4 Points

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary. Consider the Neumann boundary problem

 $-\Delta u = f \quad \text{in } \Omega,$ $\frac{\partial u}{\partial n} = g \quad \text{on } \partial \Omega$

where $f \in L^2(\Omega)$ and $g \in L^2(\partial\Omega)$. We additionally require $\int_{\Omega} u \, dx = 0$ to impose uniqueness of the solution since u + c for a $c \in \mathbb{R}$ is a solution if u solves this boundary problem.

(i.) Show that

$$\int_{\Omega} f \, \mathrm{d}x + \int_{\partial \Omega} g \, \mathrm{d}a = 0$$

is a necessary condition for the solvability of the Neumann boundary problem. (ii.) Prove the existence of a weak solution of the Neumann boundary problem. To this end, derive the saddle point formulation and show ellipticity of a suitable bilinear form and prove an inf-sup-condition.

Exercise 32

2+4 Points

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary. Consider the biharmonic equation

$$-\Delta^2 u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$

$$\Delta u = 0 \quad \text{on } \partial\Omega,$$

where $f \in L^2(\Omega)$.

(i.) Use $w = \Delta u$ to formulate a saddle point formulation for the biharmonic equation. Choose *u* and *w* in $H_0^1(\Omega)$ and prove the inf-sup-condition.

(ii.) Derive a finite element formulation for the saddle-point problem and prove the discrete inf-sup-condition and V_h -ellipticity.

Exercise 33

4+4 Points

(i.) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary. Prove that H(div) is a Hilbert space with inner product

$$(u, v)_{H(\operatorname{div})} := (u, v)_{L^2(\Omega, \mathbb{R}^n)} + (\operatorname{div} u, \operatorname{div} v)_{L^2(\Omega, \mathbb{R})}$$

for any $u, v \in H(\text{div})$.

Remark: The particular task is the proof of the completeness of this space. (ii.) Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with polygonal boundary and \mathcal{T}_h a triangulation on Ω . The Banach space H(rot) is defined as the completion of $C^{\infty}(\Omega, \mathbb{R}^2)$ w.r.t. the norm

$$||f||^2_{H(\operatorname{rot})} = ||f||^2_{0,2,\Omega} + ||\operatorname{rot} f||^2_{0,2,\Omega}$$

where $\operatorname{rot} f = \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}$. Define

$$\mathcal{S}_h = \left\{ p \in L^2(\Omega, \mathbb{R}^2) : p \big|_T \in \mathcal{P}_m(T) \text{ for } m \in \mathbb{N} \text{ and } T \in \mathcal{T}_h \right\}.$$

Let $f \in S_h$. Show that $f \in H(\text{rot})$ if for all interior edges $E \in \mathcal{E}_h$ the function $f \cdot \tau_E$ is continuous on E, where τ_E is the tangent vector of E.

Exercise 34

6 Points

Let $m, n \ge 1$, $\Omega \subset \mathbb{R}^n$ be a bounded domain with polygonal boundary and \mathcal{T}_h be any triangulation on Ω . Prove that for any $f \in W^{m,p}(T)$ for an element $T \in \mathcal{T}_h$ a polynomial $g \in \mathcal{P}_{m-1}(T)$ exists such that for $k \in \{0, ..., m\}$

$$|f - g|_{W^{k,p}(T)} \le Ch^{m-k}|f|_{W^{m,p}(T)}$$

for a positive constant *C* depending solely on *m* and Ω .

Hint: Follow the proof of the approximation error estimate for the Lagrange interpolation.