Exercises to Wissenschaftliches Rechnen I/Scientific Computing I ($\mathrm{V}_{3} \mathrm{E}_{1} / \mathrm{F}_{4} \mathrm{EI}_{1}$)
 Winter 2016/17
 Prof. Dr. Martin Rumpf
 Alexander Effland — Stefanie Heyden - Stefan Simon — Sascha Tölkes
 Problem sheet 11

Please hand in the solutions on Tuesday January 24!

Exercise 35

4 Points
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with polygonal boundary and \mathcal{T}_{h} be any triangulation on Ω. Consider the Raviart-Thomas space $R T_{0}(\Omega)$ given by

$$
\begin{aligned}
R T_{0}(\Omega)= & \left\{q \in L^{2}(\Omega): \text { for all } T \in \mathcal{T}_{h} \text { there exists } a \in \mathbb{R}^{2}, b \in \mathbb{R}\right. \text { such that } \\
& \left.q(x)=a+b x \text { for all } x \in T,[q]_{E} \cdot n_{E}=0 \text { for all } E \in \mathcal{E}_{h}\right\} .
\end{aligned}
$$

Here, \mathcal{E}_{h} is the set of all edges, n_{E} denotes the outer normal of T and $[q]_{E}$ refers to the jump along $E \in \mathcal{E}_{h}$. Derive an explicit formula for the basis functions of $R T_{0}$ using the notation in Figure 1.

Figure 1: Triangle with vertices and edge midpoints.

For $n \in \mathbb{N}$ let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipschitz boundary. Consider the bilinear forms associated with the Stokes equation

$$
\begin{aligned}
& a: V \times V \rightarrow \mathbb{R}, \quad a(u, v)=\int_{\Omega} \sum_{i=1}^{n} \nabla u_{i} \cdot \nabla v_{i} \mathrm{~d} x \\
& b: V \times W \rightarrow \mathbb{R}, \quad b(v, q)=-\int_{\Omega}(\operatorname{div} v) \cdot q \mathrm{~d} x
\end{aligned}
$$

where $V=H_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)$ and $W=\left\{q \in L^{2}\left(\Omega, \mathbb{R}^{n}\right): \int_{\Omega} q \mathrm{~d} x=0\right\}$. Furthermore, we introduce

$$
\tilde{a}: V \times V \rightarrow \mathbb{R}, \quad \tilde{a}(u, v)=2 \int_{\Omega} \sum_{i, j=1}^{n} e_{i j}(u) e_{i j}(v) \mathrm{d} x
$$

with $e_{i j}(u)=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)$. Prove that $a(u, v)=\tilde{a}(u, v)$ for all $u, v \in\{f \in V$: $b(f, q)=0$ for all $q \in W\}$.

Exercise 37

4 Points
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with polygonal boundary and \mathcal{T}_{h} a triangulation on Ω. Let $V_{h}=R T_{0}\left(\Omega, \mathbb{R}^{2}\right)$ (see exercise 35$)$ and $W_{h} \subset\left\{f \in L^{2}\left(\Omega, \mathbb{R}^{2}\right): \int_{\Omega} f \mathrm{~d} x=0\right\}$ be any finite-dimensional function space. Furthermore, we set

$$
b: V_{h} \times W_{h} \rightarrow \mathbb{R}, \quad b(v, w)=-\int_{\Omega}(\operatorname{div} v) \cdot w \mathrm{~d} x
$$

Show that (see exercise 33 for the definition of $\|\cdot\|_{H(\text { div })}$)

$$
\inf _{w \in W_{h}} \sup _{v \in V_{h}} \frac{|b(v, w)|}{\|v\|_{H(\text { div })}\|w\|_{L^{2}(\Omega)}}=0
$$

already implies that there exists $w \in W_{h} \backslash\{0\}$ such that $b(v, w)=0$ for all $v \in V_{h}$.

Let $\Omega \subset \mathbb{R}^{n}$ be a polygonal domain, \mathcal{T}_{h} be triangulation of $\Omega, f \in L^{2}\left(\Omega, \mathbb{R}^{2}\right)$, and \mathcal{I}_{h} be the Lagrange interpolation operator w.r.t. the nodes of \mathcal{T}_{h}. To discretize the Stokes equation (see exercise 36), we consider the finite element spaces

$$
\begin{aligned}
& V_{h}=\left\{v_{h} \in C^{0}\left(\Omega, \mathbb{R}^{n}\right): v_{h} \in \mathcal{P}_{1}(T) \forall T \in \mathcal{T}_{h},\left.v_{h}\right|_{\partial \Omega}=0\right\}, \\
& W_{h}=\left\{p_{h}: \Omega \rightarrow \mathbb{R}^{n}: p_{h} \in \mathcal{P}_{0}(T) \forall T \in \mathcal{T}_{h}, \int_{\Omega} p_{h} \mathrm{~d} x=0\right\} .
\end{aligned}
$$

Then we solve the saddle point problem

$$
\begin{aligned}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =\left(\mathcal{I}_{h}(f), v_{h}\right)_{0,2} & & \forall v_{h} \in V_{h} \\
b\left(u_{h}, q_{h}\right) & =0 & & \forall q_{h} \in W_{h}
\end{aligned}
$$

(i.) Construct a basis of W_{h}.
(ii.) Show that solving the saddle point problem corresponds to solving a linear system

$$
\left(\begin{array}{cc}
A & B \tag{1}\\
B^{T} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{0} .
$$

Derive the matrix representation of A and B.
(iii.) Prove that the sequence $\left(U^{(k)}, P^{(k)}\right)$ obtained with Algorithm 1 converges to the solution (U, P) of (1) if THRESHOLD $=0$.

```
Algorithm 1: Saddle point based algorithm.
    Data: \(P^{(0)}, \alpha \in\left(0, \frac{2}{\left\|B A^{-1} B^{T}\right\|}\right)\), THRESHOLD \(\geq 0\)
    Set \(k:=1\);
    repeat
        Solve \(A U^{(k)}:=F-B^{T} P^{(k-1)} ;\)
        Set \(P^{(k)}:=P^{(k-1)}+\alpha B U^{(k)}\);
        Set \(k:=k+1\);
    until \(\left\|P^{(k)}-P^{(k-1)}\right\| \leq\) THRESHOLD;
```

