

Exercises to Wissenschaftliches Rechnen I/Scientific Computing I (V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf

Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 12

Please hand in the solutions on Tuesday January 31!

Exercise 39

6 Points

Let Ω be a polygonal domain with regular triangulation \mathcal{T}_h . The triangulation $\mathcal{T}_{\frac{h}{2}}$ is obtained by adding new vertices at the midpoints of the edges of each element and joining the vertices correspondingly (see Figure 1). Consider the finite element spaces

$$V_{h} = \left\{ v_{h} \in C^{0}(\overline{\Omega})^{2} : v_{h} \big|_{\widetilde{T}} \in \mathcal{P}_{1}^{2} \text{ for all } \widetilde{T} \in \mathcal{T}_{\frac{h}{2}} \text{ and } v_{h} = 0 \text{ on } \partial\Omega \right\},\$$
$$W_{h} = \left\{ p_{h} \in C^{0}(\overline{\Omega}) : p_{h} \big|_{T} \in \mathcal{P}_{1} \text{ for all } T \in \mathcal{T}_{h} \text{ and } \int_{\Omega} p_{h} dx = 0 \right\}.$$

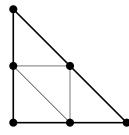


Figure 1: Triangulations \mathcal{T}_h (thick) and $\mathcal{T}_{\frac{h}{2}}$.

(i.) Show that the discrete inf-sup conditon for Stokes problem is satisfied. *Hint:* Follow the lines of Lemma 4.14.

(ii.) Let $(v, p) \in H^{2,2}(\Omega) \times H^{1,2}(\Omega)$ be the solution to Stokes problem and (v_h, p_h) the associated discrete solution. Show the estimate

$$||v - v_h||_{1,2,\Omega} + ||p - p_h||_{0,2,\Omega} \le Ch(||v||_{2,2,\Omega} + ||p||_{1,2,\Omega}).$$

Exercise 40

4 Points

Let $\rho > 0$, $n \ge 1$, $p,q \in [1,\infty]$ and $0 \le m \le l$ be fixed. Consider a bounded domain $\Omega \subset \mathbb{R}^n$ with polygonal boundary and \mathcal{T}_h a triangulation of Ω such that $\rho h \le \operatorname{diam}(T) \le h$ for every $T \in \mathcal{T}_h$. Show that for any $v_h \in V_h \subset H^{l,p}(\Omega) \cap H^{m,q}(\Omega)$, where V_h is a finite element space, and any $T \in \mathcal{T}_h$ the inequality

$$\|v_h\|_{l,p,T} \le Ch^{m-l+\frac{n}{p}-\frac{n}{q}} \|v_h\|_{m,q,T}$$

holds true, where *C* does neither depend on v_h nor on *h*.

Exercise 41

6 Points

Let $\Omega = [0,1]^2$, \mathcal{M}_h be a regular mesh on Ω composed of quadratic elements and

$$V_h := \left\{ v_h \in L^2(\Omega, \mathbb{R}^2) : v_h \big|_K \in \mathcal{Q}_1^2 \text{ for all } K \in \mathcal{M}_h, \text{ and } v_h = 0 \text{ on } \partial \Omega \right\},$$
$$W_h := \left\{ w_h \in L^2(\Omega, \mathbb{R}) : w_h \big|_K \in \mathcal{Q}_1 \text{ for all } K \in \mathcal{M}_h, \int_\Omega w_h = 0 \right\}.$$

Recall that Q_1 was introduced in exercise 10. Consider the bilinear forms

$$a: V_h \times V_h \to \mathbb{R}, \quad a(u_h, v_h) = \int_{\Omega} \sum_{i=1}^2 \nabla(u_h)_i \cdot \nabla(v_h)_i \, \mathrm{d}x,$$

$$b: V_h \times W_h \to \mathbb{R}, \quad b(v_h, q_h) = -\int_{\Omega} (\operatorname{div} v_h) \cdot q_h \, \mathrm{d}x$$

associated with Stokes problem. Construct a counterexample showing that the inf-sup-condition is not satisfied, i.e.

$$\inf_{q_h \in W_h} \sup_{v_h \in V_h} \frac{|b(v_h, q_h)|}{\|v_h\|_{1,2,\Omega} \|q_h\|_{0,2,\Omega}} = 0.$$