Exercises to Wissenschaftliches Rechnen I/Scientific Computing I ($\mathrm{V}_{3} \mathrm{E}_{1} / \mathrm{F}_{4} \mathrm{EI}_{1}$)

Winter 2016/17
Prof. Dr. Martin Rumpf
Alexander Effland — Stefanie Heyden - Stefan Simon - Sascha Tölkes

Problem sheet 2

Please hand in the solutions in the lecture on Tuesday November 8!
Remark: Exercise 4 was also contained in sheet 1. It is suggested to hand in the solution of this exercise with the other solutions of this sheet on November 8!

Exercise 4

4 Points
Let $a:(0,1) \rightarrow \mathbb{R}$ be the following function:

$$
a(x)= \begin{cases}c_{1} & \text { if } x \in\left(0, b_{1}\right), \\ c_{2} & \text { if } x \in\left[b_{1}, b_{2}\right), \\ c_{3} & \text { if } x \in\left[b_{2}, 1\right),\end{cases}
$$

for $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and $0<b_{1}<b_{2}<1$. Determine a weak solution $u \in H^{1,2}(0,1)$ of the boundary value problem

$$
\begin{aligned}
-\left(a(x) u^{\prime}(x)\right)^{\prime} & =0 \quad \forall x \in(0,1) \\
u(0) & =0 \\
u(1) & =1
\end{aligned}
$$

Exercise 5

4 Points
Consider the function

$$
u_{n} \in H^{1,2}((0,1), \mathbb{R}), \quad x \mapsto \frac{1}{4 \sqrt{\frac{1}{4}+\frac{1}{n^{2}}}}-\frac{\left(x-\frac{1}{2}\right)^{2}}{\sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{n^{2}}}}
$$

Show that u_{n} converges w.r.t. the $H^{1,2}((0,1))$-norm to

$$
u \in H^{1,2}((0,1), \mathbb{R}), \quad x \mapsto \frac{1}{2}-\left|x-\frac{1}{2}\right| .
$$

Recall that for any $f \in H^{1,2}((0,1))$ the $H^{1,2}((0,1))$-norm is defined as

$$
\|f\|_{1,2}^{2}=\int_{0}^{1}(f(x))^{2} \mathrm{~d} x+\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} \mathrm{~d} x
$$

Exercise 6

Let $\Omega \subset \mathbb{R}^{2}$ be a open and bounded domain with smooth boundary. Let $\Gamma \subset \Omega$ be an injective smooth curve that separates Ω into two non-empty and connected sets Ω^{+} and Ω^{-}. Let $f \in C^{1}(\bar{\Omega})$ be such that $\left.f\right|_{\Omega^{+}} \in C^{\infty}\left(\Omega^{+}\right)$and $\left.f\right|_{\Omega^{-}} \in C^{\infty}\left(\Omega^{-}\right)$. Show that f is twice weakly differentiable.

Exercise 7

4 Points
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipschitz boundary and $a_{i j}, b_{i}, b \in L^{\infty}(\Omega)$ with

$$
\sum_{i, j=1}^{n} a_{i, j} \xi_{i} \xi_{j} \geq c_{0}|\xi|^{2}
$$

for all $\xi \in \mathbb{R}^{n}$ with $c_{0}>0$. Verify that the following operators are bounded and coercive bilinear forms on $H_{0}^{1,2}(\Omega)$:
i) $L_{1}(u, v):=\int_{\Omega} \sum_{i, j} a_{i, j} \partial_{i} u \partial_{j} v+b u v \mathrm{~d} x$
under the assumption $c_{0}>\|b\|_{\infty} C_{P}(\Omega)$.
ii) $L_{2}(u, v):=\int_{\Omega} \sum_{i, j} a_{i, j} \partial_{i} u \partial_{j} v+\sum_{i} b_{i} \partial_{i} u v \mathrm{~d} x$
under the assumption $c_{0}>\frac{1}{2}\left(\sum_{i}\left\|b_{i}\right\|_{\infty}\left(1+C_{P}(\Omega)\right)\right)$.

Hints:

Use the Poincaré inequality $\|u\|_{2}^{2} \leq C_{P}(\Omega)\|\nabla u\|_{2}^{2}$ with a constant $C_{p}(\Omega)$ depending solely on Ω.
For ii) use $\partial_{i} u \cdot u \leq \frac{1}{2}\left(\partial_{i} u\right)^{2}+\frac{1}{2} u^{2}$.

