

Exercises to Wissenschaftliches Rechnen I/Scientific Computing I (V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf

Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 5

Please hand in the solutions on Tuesday November 29!

Exercise 14

4 Points

For a triangle *T* we define a refinement

- in red by dividing *T* into four triangles with new nodes on the edge midpoints,
- in green w.r.t. an edge *E* by dividing *T* into two triangles with a new node on the edge midpoint of *E*.

Figure 1: Left: red-refinement. Right: green-refinement.

Let $\mathcal{T} = \{T_i\}_{i \in I}$ be a triangular mesh consisting of elements T_i . Let $r, g : I \to \{0, 1\}$ be functions, which indicate if T_i is already red resp. green refined. Furthermore, let mark : $I \to \{0, 1\}$ be a marking function which decides if an element T_i has to be refined. We denote by $nb(T_i, E)$ the neighboring element of T_i s.t. E is a common edge. Now, a red-green refinement of \mathcal{T} is based on the following assumptions:

- a marked element (i.e. mark(i) = 1) is replaced by a red-refinement,
- after a red-refinement, neighboring elements are replaced by green-refinements,
- if the element, which has to be red-refined, has a neighboring element that is already green-refined, the green-refinement has first to be replaced by a red-refinement.

Think about possible refinement patterns and write a pseudo code algorithm to refine ${\cal T}$ with a red-green refinement.

4 Points

Exercise 15

Consider the reference domain $\hat{\omega} = [-1, 1]$,

$$\begin{array}{ll} T_1 = [0,2h], & T_2 = [2h,3h], & w_h = T_1 \cup T_2, \\ \widehat{T}_1 = [-1,0], & \widehat{T}_2 = [0,1], & \widehat{w} = \widehat{T}_1 \cup \widehat{T}_2, \end{array}$$

and the affine transformation $F : \hat{\omega} \to \omega_h$. Let u(x) = x, $\hat{u} = u \circ F$ and $P_{L^2}\hat{u}$ be the local L^2 -projection of \hat{u} onto \mathcal{P}_1 , i.e. $\int_{\hat{\omega}} (P_{L^2}\hat{u} - \hat{u}) \cdot 1 \, dt = \int_{\hat{\omega}} (P_{L^2}\hat{u} - \hat{u}) \cdot t \, dt = 0$. Show that the local projection error is only of first order, i.e.

$$\frac{\left\|u - (P_{L^2}\widehat{u}) \circ F^{-1}\right\|_{0,2,\omega_h}}{\|u\|_{2,2,\omega_h}} \le \frac{h}{4\sqrt{3}\sqrt{1+3h^2}}.$$

Exercise 16

4 Points

Let *H* be a Hilbert space and $V \subset H$ a dense subspace such that $V \hookrightarrow H$ is continuous. Furthermore, let V_h be a subspace of V, $a(\cdot, \cdot)$ and $a_h(\cdot, \cdot)$ are coercive and bounded bilinear forms, and *l* and l_h are continuous functionals on *V* and V_h , respectively. We denote by $u \in V$ and $u_h \in V_h$ the solutions of the associated variational problems, i.e. a(u, v) = l(v) for all $v \in V$, $a_h(u_h, v_h) = l_h(v_h)$ for all $v_h \in V_h$, and $\varphi_\eta \in V$ for a $\eta \in H$ is the solution of $a(v, \varphi_\eta) = (\eta, v)_H$ for all $v \in V$. Prove the error estimate (for a constant C > 0)

$$||u - u_h||_H \le \sup_{\eta \in H} \frac{1}{||\eta||_H} \inf_{\varphi_h \in V_h} (C||u - u_h||_V ||\varphi_\eta - \varphi_h||_V + |a(u_h, \varphi_h) - a_h(u_h, \varphi_h)| + |l(\varphi_h) - l_h(\varphi_h)|).$$

Exercise 17

4 Points

Let $\Omega \subset \mathbb{R}^n$ be a non-empty, bounded and open set. Consider the biharmonic equation $\Delta^2 u = f$ in Ω , $u = u^{\partial}$ and $\partial_n u = \partial_n u^{\partial}$ on $\partial \Omega$ for given $f \in L^2(\Omega)$ and $u^{\partial} \in H^{2,2}(\Omega)$. Here, $\Delta^2 u := \Delta \Delta u$.

(i.) Prove that $u \in C^4(\overline{\Omega})$ is a solution of the above biharmonic equation if and only if u satisfies the boundary conditions and $\int_{\Omega} \Delta u \,\Delta \varphi \,dx = \int_{\Omega} f \varphi \,dx \; (\forall \varphi \in H_0^{2,2}(\Omega))$ holds true.

(ii.) Show that $\int_{\Omega} \Delta g \Delta h \, dx = \int_{\Omega} \sum_{i,j=1}^{n} \partial_{i,j}^2 g \partial_{i,j}^2 h \, dx$ for all $g, h \in H_0^{2,2}(\Omega)$. In particular, $|g|_{2,2,\Omega} = ||\Delta g||_{0,2,\Omega}$.

(iii.) Let Ω be a convex domain with smooth boundary. Prove that a unique weak solution $u \in H^{2,2}(\Omega)$ of the biharmonic equation in (i.) exists subjected to the boundary conditions $u = u^{\partial}$ and $\partial_n u = \partial_n u^{\partial}$ on $\partial \Omega$.

Hint: Consider the bilinear form $a(g,h) = \int_{\Omega} \Delta g \Delta h \, dx$ for $g,h \in H_0^{2,2}(\Omega)$. Recall that the Poincaré inequality implies $||g||_{1,2,\Omega} \leq \tilde{C}_P |g|_{2,2,\Omega}$ for a constant $\tilde{C}_P > 0$.