

Exercises to Wissenschaftliches Rechnen I/Scientific Computing I (V3E1/F4E1)

Winter 2016/17

Prof. Dr. Martin Rumpf

Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 8

Please hand in the solutions on Tuesday December 20!

Exercise 23

4 Points

For $m, n \ge 2$ let $\mathcal{G} = \{1, ..., m\} \times \{1, ..., n\}$ be a rectangular grid. On \mathcal{G} , a regular triangular mesh \mathcal{T}_h can be constructed by using the points in \mathcal{G} as vertices for the triangles as shown in Figure 1 (in this example, m = 8 and n = 4 and the circles \circ correspond to the elements of \mathcal{G}). On the triangular mesh \mathcal{T}_h , we consider the

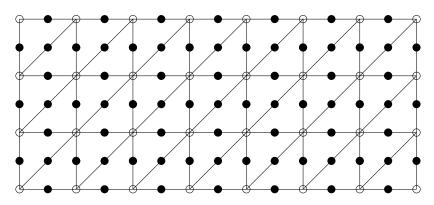
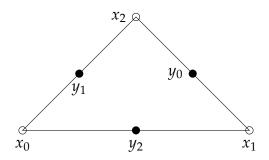


Figure 1: Triangular mesh for Crouzeix-Raviart elements.

Crouzeix-Raviart finite element space V_h (the degrees of freedom for the Crouzeix-Raviart elements are the filled circles • in Figure 1). Derive an explicit formula for the total number of degrees of freedom of V_h in terms of *m* and *n*. Compare your result with the number of degrees of freedom of the \mathcal{P}_1 -finite element space on \mathcal{T}_h .

Consider the following triangle $T \subset \mathbb{R}^2$ with vertexes x_0 , x_1 and x_2 :



Derive an explicit formula for the local stiffness matrix of the Crouzeix-Raviart finite element on *T* in terms of x_0 , x_1 and x_2 , where y_0 , y_1 and y_2 represent the degrees of freedom located at the midpoints of the edges.

Exercise 25

4 Points

Let $\Omega = (0,1)$, \mathcal{T}_h be a given triangulation on Ω and $f \in L^2(\Omega)$. Furthermore, let $u \in H^1(\Omega)$ be the weak solution of

$$-u'' = f \qquad \text{in } \Omega,$$
$$u(0) = u(1) = 0.$$

Derive an a posteriori error estimate for the discrete solution $u_h \in \mathcal{V}_h$ w.r.t. the $H^1(\Omega)$ -seminorm $(\int_{\Omega} |u'|^2 dx)^{\frac{1}{2}}$, where \mathcal{V}_h is the space of \mathcal{P}_1 -finite elements on \mathcal{T}_h . **Hint:** Follow the proof of Theorem 2.3 and use Lagrange interpolation.

Exercise 26

4 Points

Let $\Omega = (0, 1)^2$ and \mathcal{T}_h be a given triangulation on Ω . For $f \in L^2(\Omega)$ consider

$$-\Delta u = f \quad \text{in } \Omega, u = 0 \quad \text{on } \partial \Omega.$$
 (1)

We denote by u the weak solution of (1) and by u_h the discrete solution on the space of \mathcal{P}_1 -finite elements on \mathcal{T}_h . Find some $f \in L^2(\Omega)$ such that $u \neq u_h$, but $\eta_T = 0$ for all $T \in \mathcal{T}_h$.