Exercises to Wissenschaftliches Rechnen I/Scientific Computing I (V3E1/F4E1)

Winter 2016/17
Prof. Dr. Martin Rumpf
Alexander Effland — Stefanie Heyden — Stefan Simon — Sascha Tölkes

Problem sheet 8
Please hand in the solutions on Tuesday December 20!

Exercise 23

4 Points
For $m, n \geq 2$ let $\mathcal{G}=\{1, \ldots, m\} \times\{1, \ldots, n\}$ be a rectangular grid. On \mathcal{G}, a regular triangular mesh \mathcal{T}_{h} can be constructed by using the points in \mathcal{G} as vertices for the triangles as shown in Figure 1 (in this example, $m=8$ and $n=4$ and the circles \circ correspond to the elements of \mathcal{G}). On the triangular mesh \mathcal{T}_{h}, we consider the

Figure 1: Triangular mesh for Crouzeix-Raviart elements.

Crouzeix-Raviart finite element space \mathcal{V}_{h} (the degrees of freedom for the CrouzeixRaviart elements are the filled circles • in Figure 1). Derive an explicit formula for the total number of degrees of freedom of \mathcal{V}_{h} in terms of m and n. Compare your result with the number of degrees of freedom of the \mathcal{P}_{1}-finite element space on \mathcal{T}_{h}.

Consider the following triangle $T \subset \mathbb{R}^{2}$ with vertexes x_{0}, x_{1} and x_{2} :

Derive an explicit formula for the local stiffness matrix of the Crouzeix-Raviart finite element on T in terms of x_{0}, x_{1} and x_{2}, where y_{0}, y_{1} and y_{2} represent the degrees of freedom located at the midpoints of the edges.

Exercise 25

4 Points
Let $\Omega=(0,1), \mathcal{T}_{h}$ be a given triangulation on Ω and $f \in L^{2}(\Omega)$. Furthermore, let $u \in H^{1}(\Omega)$ be the weak solution of

$$
\begin{aligned}
-u^{\prime \prime} & =f \quad \text { in } \Omega, \\
u(0)=u(1) & =0 .
\end{aligned}
$$

Derive an a posteriori error estimate for the discrete solution $u_{h} \in \mathcal{V}_{h}$ w.r.t. the $H^{1}(\Omega)$-seminorm $\left(\int_{\Omega}\left|u^{\prime}\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$, where \mathcal{V}_{h} is the space of \mathcal{P}_{1}-finite elements on \mathcal{T}_{h}. Hint: Follow the proof of Theorem 2.3 and use Lagrange interpolation.

Exercise 26

Let $\Omega=(0,1)^{2}$ and \mathcal{T}_{h} be a given triangulation on Ω. For $f \in L^{2}(\Omega)$ consider

$$
\begin{array}{rll}
-\Delta u & =f & \text { in } \Omega, \\
u & =0 & \tag{1}\\
\text { on } \partial \Omega .
\end{array}
$$

We denote by u the weak solution of (1) and by u_{h} the discrete solution on the space of \mathcal{P}_{1}-finite elements on \mathcal{T}_{h}. Find some $f \in L^{2}(\Omega)$ such that $u \neq u_{h}$, but $\eta_{T}=0$ for all $T \in \mathcal{T}_{h}$.

