

Algorithmische Mathematik I

Wintersemester 2017/18 Prof. Dr. Ira Neitzel AR. Dr. Tino Ullrich

Übungsblatt 5.

Abgabe am 13.11.2017 vor der Vorlesung.

Aufgabe 1. (Landau-Symbole)

Gegeben sei die Funktion

$$f(x) = 32x^4 - 12x^5 + 13x^7(\ln(x))^4 + x^9$$
, $x > 0$.

Geben Sie einfache Funktionen $g_1(x), g_2(x)$ an, so dass

a.
$$f = \mathcal{O}(g_1)$$
 für $x \to \infty$, d.h. $a = \infty$,

b.
$$f = o(g_2)$$
 für $x \to 0$, d.h. $a = 0$.

(2+2=4 Punkte)

Aufgabe 2. Beweisen Sie den folgenden Satz. Seien alle $|\varepsilon_i| \le \varepsilon < 1/n$ für $1 \le i \le n$ sowie δ definiert durch

$$1 + \delta = \prod_{i=1}^{n} (1 + \varepsilon_i)^{\pm 1}$$

Dann gilt

$$|\delta| \le \frac{n \cdot \varepsilon}{1 - n \cdot \varepsilon} \,.$$

Bemerkung: Dabei bedeutet " ± 1 " im Exponenten, daß bei $(1 + \varepsilon_i)$ für $1 \le i \le n$ der Exponent entweder +1 oder -1 lautet, aber nicht für alle $1 \le i \le n$ identisch zu sein braucht!

(4 Punkte)

Aufgabe 3. (Stabilitätsanalyse)

Es seien Maschinenzahlen $a_1, ..., a_n$ gegeben und

$$f(a_1, ..., a_n) = \sum_{i=1}^n a_i$$
.

Der Computer habe die Maschinengenauigkeit ε und wir setzen $n \leq (2\varepsilon)^{-1}$ voraus. Es wird sukzessive addiert und nach jedem Zwischenergebnis gerundet, was in einer Funktion $\tilde{f}(a_1,...,a_n)$ resultiert.

a. Zeigen Sie, dass \tilde{f} rückwärtsstabil ist, d.h. betrachten Sie

$$\tilde{f}(a_1,...,a_n) = f(a_1(1+\delta_1),...,a_n(1+\delta_n))$$

und zeigen Sie, dass sich die relativen Eingabefehler δ_i wie $|\delta_i| \leq C\varepsilon$ verhalten. Dabei ist die Konstante C von den a_i unabhängig.

b. Zeigen Sie, dass für den absoluten Fehler zwischen \tilde{f} und f gilt

$$|\tilde{f}(a_1, ..., a_n) - f(a_1, ..., a_n)| \le \frac{2\varepsilon}{\epsilon} \sum_{i=1}^n |n - i + 1| |a_i|$$

gilt.

c. In welcher Reihenfolge sollte summiert werden, um den Fehler zu minimieren?

Hinweis: Verwenden Sie Aufgabe 2!

$$(3+2+1=6 \text{ Punkte})$$

Aufgabe 4. (Was macht dieses Programm? (schriftlich bearbeiten!))

Gegeben seien n Gleitkommazahlen a_1, \ldots, a_n . Damit wird folgendes Programm ausgeführt (dabei bezeichne := die Zuweisung):

$$s := a_1$$

$$c := 0$$
for $i := 2, \dots, n$:
$$t_1 := a_i - c$$

$$t_2 := s + t_1$$

$$t_3 := t_2 - s$$

$$s := t_2$$

$$c := t_3 - t_1$$
return s

- a. Was berechnet das Programm, wenn alle Operationen ohne Rundungsfehler ausgeführt werden?
- b. Was berechnet das Programm, wenn bei der Operation $t_2 := s + t_1$ Rundungsfehler auftreten, alle anderen Operationen aber exakt berechnet werden?
- c. Geben Sie ein Beispiel an, wo dieser Algorithmus nützlich ist.

$$(2+2+2=6 \text{ Punkte})$$