

Einführung in die Grundlagen der Numerik

Wintersemester 2017/2018
Prof. Dr. C. Burstedde
J. Holke

Übungsblatt 10.

Abgabe am Dienstag, 09.01.2018.

Aufgabe 1. (4+3+3=10 Punkte)

Für eine Matrix $A \in \mathbb{C}^{n \times n}$ sei

$$W(A) = \left\{ \frac{x^* A x}{x^* x} \,\middle|\, x \in \mathbb{C}^n, x \neq 0 \right\} = \left\{ x^* A x \,\middle|\, x \in \mathbb{C}^n, \|x\|_2 = 1 \right\}$$
 (1)

der Wertebereich von A. Zeigen Sie:

- a) W(A) ist zusammenhängend.
- b) Falls A hermitesch ist, dann ist $W(A) = [\lambda_n, \lambda_1]$, wobei $\lambda_1 \ge \cdots \ge \lambda_n$ die Eigenwerte von A seien.
- c) Falls $A^* = -A$, dann ist $\Re(\mathcal{W}(A)) = 0$.

Aufgabe 2. (5 + 5 = 10 Punkte)

Es sei

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 3 & 2 & 0 \\ 0 & 2 & 4 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} . \tag{2}$$

- a) Geben Sie die Gerschgorin Kreise für die Eigenwerte von A an. Ist A positiv definit?
- b) Es seien $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4$ die Eigenwerte von A. Zeigen Sie, daß $\lambda_1 \leq 2$ und $\lambda_4 \geq 4$ gelten, ohne die Eigenwerte explizit zu bestimmen.

Aufgabe 3. (10 Punkte)

Die Verwendung von reelwertigen Shifts zur Konvergenzbeschleunigung des QR-Algorithmus führt bei reellen Matrizen mit komplexen Eigenwerten zu keiner Konvergenz. Zur Vermeidung führen wir einen Doppelshift τ_k und $\tau_{k+1} = \bar{\tau}_k$ ein. Zeigen Sie, dass dann $A^{(k+2)}$ wieder reell ist.

Aufgabe 4. (10 Punkte)

Es seien $A\in\mathbb{R}^{m\times n}$, $b\in\mathbb{R}^m$ und $\Delta b\in\mathbb{R}^m$. Es seien x und $x+\Delta x$ die Lösungen der linearen Ausgleichsprobleme

$$||Ax - b||_2 = \min$$
 bzw. $||A(x + \Delta x) - (b + \Delta b)||_2 = \min$ (3)

Ferner sei $A = U\Sigma V^T$ mit $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)$ eine Singulärwertzerlegung von A und $\sigma_1 \ge \dots \ge \sigma_r \ne 0$. Zeigen Sie:

$$\|\Delta x\|_2 \le \frac{1}{\sigma_r} \|\Delta b\|_2. \tag{4}$$