Aufgabe 50: Gegeben seien folgende drei quadratische Polynome

$$p_1(x) = x^2 + 2x + 3,$$

 $p_2(x) = 3x^2 + 2x + 1,$
 $p_3(x) = x^2 + x + 2.$

Zeigen Sie, dass diese Polynome linear unabhängig sind und eine Basis des Vektorraumes der quadratischen Polynome bilden. Wie lautet die Darstellung der Polynome

$$p(x) = 5x^2 + 5x + 6$$
 und $q(x) = 3x + 7$

bezüglich dieser Basis?

Aufgabe 51: Sei
$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$$
.

- a) Welches geometrische Objekt bildet die Menge aller Vektoren $w \in \mathbb{R}^3$ für die v und w linear abhängig sind.
- b) Welches geometrische Objekt bildet die Menge aller Vektoren $w \in \mathbb{R}^3$ für die v und w linear abhängig sind und ||w|| = 1.
- c) Welches geometrische Objekt bildet die Menge aller Vektoren $w \in \mathbb{R}^3$ für die gilt $v \cdot w = 0$?
- d) Welches geometrische Objekt bildet die Menge aller Vektoren $w \in \mathbb{R}^3$ für die gilt $v \cdot w = 0$ und ||w|| = 1?

Aufgabe 52: a) Kann man die in i) und ii) angegebenen Mengen zu einer Basis des R³ ergänzen? Falls ja, führen Sie diese Ergänzung durch.

i)
$$\left\{ \begin{pmatrix} 1\\0\\-2 \end{pmatrix}, \begin{pmatrix} 2\\3\\0 \end{pmatrix} \right\}$$
ii)
$$\left\{ \begin{pmatrix} 1\\0\\-2 \end{pmatrix}, \begin{pmatrix} -2\\0\\4 \end{pmatrix} \right\}$$

b) Kann man aus den Mengen in i) und ii) durch Wegstreichen von Vektoren eine Basis des \mathbb{R}^2 bilden? Falls ja, wie?

i)
$$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix} \right\}$$

ii) $\left\{ \begin{pmatrix} 1\\-2 \end{pmatrix}, \begin{pmatrix} 2\\-4 \end{pmatrix}, \begin{pmatrix} -3\\6 \end{pmatrix} \right\}$

Aufgabe 53: a) Schreiben Sie den Vektor
$$a=\begin{pmatrix}1\\-2\\5\end{pmatrix}$$
als Linearkombination der Vektoren

$$b_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

b) Schreiben Sie den Vektor
$$a = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$$
 als Linearkombination der Vektoren

$$b_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

c) Schreiben Sie das Polynom t^2+4t-3 als Linearkombination der Polynome $t^2-2t+5, \quad 2t^2-3t, \quad t+3.$