o © . . .
.. S Scientific Computing 1
... o Winter term 2017/18)
.. ° Priv.-Doz. Dr. Christian Rieger ' L
O Christopher Kacwin universitatbonn
Sheet 11 Submission on Thursday, 18.1.18.

Exercise 1. (Raviart-Thomas element)

In this exercise, we analyse the behaviour of the Raviart-Thomas element in the frame-
work of primal mixed methods. Let C R be a polygonal domain with a quasi-uniform
triangulation T,. We consider the saddle point problem:

Find (o,u) € X x M = L?(Q)? x H} () such that

(0.’ 7.)0 _ (7—7 VU)O =0 for all 7 S LQ(Q)du
~(0.Vo)o+ () =0 for all v e HY(Q).

The Raviart-Thomas finite element spaces X; = RTy and M), = {v € L*(Q) |
v|p constant VT' € Tp,} now describe a nonconformal discretization, therefore we intro-
duce mesh-dependent norms for 7 € Xy, v € My,

1/2
Irllon = [I7lE+5 Dl nelfe |
ecl'y
1/2
oy = | D R +a7 YOI |
T€7—h eel"h

where I'j, is the set of interior edges, n. is a normal vector corresponding to an edge e,
and J(v) is the jump of v at an interior edge e.

a) Show that with respect to these norms, the bilinear forms a(r,0) = (7,0)¢ and
b(7,v) = (div T, v)g are continuous. Furthermore, show that a(-,-) is coercive.

b) Show that the inf-sup condition

b(T, v)
sup
rexy ITllo.n

holds, with 3 independent of h.

> By, forall v e My

(8 points)
Programmieraufgabe 1. (global system)

The goal of this exercise is to assemble the global system of equations resulting from the
finite element discretization on sheet 8. We start with the data obtained from exercise
d) on sheet 8.

We recall the basic concepts of the finite element scheme we are implementing. Let {¢; }
be the H'-conform, nodal basis (with respect to all nodes, not only the non-boundary
nodes). We can state a discrete weak formulation for the Galerkin approximation up,
without boundary conditions:

> <m|T/TVuhV¢jd$+C|T/Tuh¢jdx> => f|T/T¢>jdaj, j=1,...,N.

TeT TeT

N
i=1

We expand uj, = ZZ]\LI u;¢; and obtain

N
;) <m|T/TV¢)iv¢jdx—|—C’T/T¢i¢jdl'>Ui: > f|T/T¢jdx’ j=1,...,N.

TeTh TeT),

Here, we see that S(i,5,7) = [;V¢;V¢;dx are the local stiffness matrix entries,
M(i,j,T) = [;¢ipjdx are the local mass matrix entries, and L(j,T) = [, ¢;dx are
the local load vector entries. We therefore can write

N
YD (mlrS(i, 4, T) +elrM (G, j, T))ws = Y flrL(yt), j=1,...,N.

i=1TeTy, TeT),

To impose Dirichlet boundary conditions, we can set u; = 0 for boundary nodes, as well
as set S(i,7,T) =0,M(i,5,T) = 0, L(j, T) = 0 if either i or j corresponds to a boundary
node. This is equivalent to removing the rows and columns corresponding to boundary
nodes from the equation system, however we keep them set to zero for convenience.

a) Write a routine that assembles the global load vector in the following format: The
vector has length the number of nodes, each entry corresponding to its correspon-
ding node in the 'Nodes’ vector. If the corresponding Node lies on the boundary,
its entry should be zero. Otherwise it is the sum of all local loadvector entries cor-
responding to this Node, multiplied with the corresponding fValue. Achieve this
by iterating over the Elements’ local loadvectors.

The global system matrix will have many zero entries, so we opt for a sparse matrix format
which allows fast multiplication. We first assemble the entries of the global system matrix
as a list, then convert this list to the compressed sparse row (CSR) matrix format.

b) Construct an object 'matrixEntry’ that can hold a row index (nonnegative integer),
column index (nonnegative integer) and a real number (double precision). Write
a routine that creates a 'matrixEntry’-array of all nonzero entries for the global
system matrix. Start with an array with local entries, i.e. one for each local stiffness
matrix entry multiplied with its corresponding mValue and one for each local mass
matrix entry multiplied with its corresponding cValue. Here, only consider entries
where both node indices correspond to non-boundary nodes. Then, sort this array
into lexicographical order with respect to the row and column indices. Finally,
create a new array with global entries by adding up all local entries which have the
same row and column index.

c) Inform yourself about the CSR matrix format, e.g. here: https://en.
wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR, _CRS_or_
Yale_format). Construct an object ’"CSRmatrix’ and write a routine which con-
verts the list of global entries obtained from exercise b) into a CSRmatrix.

d) Test your implementation. Start with the file uniformMesh3.txt from the home-
page, and go through all necessary steps to obtain the global load vector and the
global system matrix in CSR format.

(16 points)

The programming exercise should be handed in during the exercise classes (bring your
own laptop!) in two weeks, i.e. on 25.1/26.1.18. All group members need to attend the
presentation of your solution to get points.

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)

