
Numerical Algorithms

Winter semester 2018/2019
Prof. Dr. Marc Alexander Schweitzer

Denis Duesseldorf

Exercise sheet 5. Submission on Tuesday, 2018-11-20, before lecture.

Exercise 15. (Schwarz iterations with approximate subdomain solvers)

In the lecture’s section on subdomain solvers we have replaced A−1
λ by W−1

λ , an ap-
proximation of A−1

λ . It can, for instance, be obtained from using an inner iteration for
A−1
λ y = c. We assume that Wλ stems from a symmetric iteration and that

δWλ ≤ Aλ ≤ ∆Wλ , 0 < δ ≤ ∆ .

Reminder : An iteration with M = I −NA = I −W−1A is called symmetric if W > 0
and A symmetric.

This yields and inner iteration Φλ and global iteration matrices M s
mult,M

s
add

Πλ = pλW
−1
λ rλA Φλ(y, c) := y − pλW−1

λ rλ(Ay − c) = y −Πλ(y − x) ,

M s
mult = (I −Πλmax) · · · (I −Πλ1) , M s

add = I −
∑
λ∈Λ

Πλ .

Show the following, yet unproven, results from the lecture.

a) It holds that
σ(Πλ) ⊂ σ(W−1

λ Aλ) ∪ {0}

with equality instead of ⊂ if dimXλ < dimX.

b) We have that
ρ(Πλ) ≤ ∆⇔ Aλ ≤ ∆Wλ .

c) M s
add yields a symmetric linear iteration.

d) With W s
add being the matrix of the third normal form to the iteration matrix M s

add

we have
A ≤ #Λ∆W s

add .

e) For sufficiently small θ the dampened additive Schwarz method with approximate
subdomain solvers W−1

λ converges.

(5 Points)

1

Exercise 16. (Disjoint Schwarz iterations)

If a non-overlapping decomposition Λ of I is given without the assumptions of ordering
of indices or shape of the prolongations as

(pλ)k,l = δk,l ∈ RN×#λ , k ∈ I, l ∈ λ

we can still transform the system into an equivalent one that reproduces a block-Jacobi
or block-Gauss-Seidel structure of the additive and multiplicative Schwarz iteration.
That, is we can treat the Schwarz iteration in the general disjoint subdomain case as
block-Gauss-Seidel and block-Jacobi iterations as well.

We view xλ ∈ Xλ as single block of a vector in X and gather these all together into a
block vector x̂ = (xλ)λ∈λ. Note that in the previously considered, ordered case we would
have x = x̂.

The map

T : X → X x̂ = (xλ)λ∈Λ 7→
∑
λ∈Λ

pλxλ

describes a regular transformation x = T x̂. This map reorders the space X such that
the resulting partition has the right ordering to yield block vectors and matrices. Hence,
define

p̂λ : Xλ → X (p̂λ)k,l := δk,l ∈ RN×#λ , k ∈ I, l ∈ λ .

This yields

pλ = T p̂λ , x =
∑
λ∈Λ

pλxλ = T x̂ .

Using T and p̂λ we can transform the system Ax = b into

T TAT︸ ︷︷ ︸
=:Â

x̂ = T T b︸︷︷︸
=:b̂

.

Let Φ̂ be the iterative method defined via p̂λ, Â and r̂λ = p̂Tλ .

Show that the following hold.

a) For the consistent single subdomain iteration Φλ defined via Mλ = (I − Pλ) it
holds that Φλ = T ◦ Φ̂λ ◦ T T . Moreover, the iteration Φ̂ is linear and consistent
itself.

b) Φ̂mult = ΦGS , Φ̂θ
add = Φθ

J with ΦGS denoting the block-Gauss-Seidel and Φθ
J the

dampened block Jacobi method.

c) Φmult = T ◦ ΦGS ◦ T T and Φθ
add = T ◦ Φθ

J ◦ T T .

(2 Points)

2

Exercise 17. (Disjoint additive Schwarz iteration)

For the following assume that the conditions of the previous exercise hold, that A > 0
and that

γWadd ≤ A ≤ ΓWadd .

and that we are restricted to the case of two k = #Λ = 2 disjoint domains without any
assumptions on ordering of pi = pλi . For a simplified notation we use only 1, 2 instead
of λ1, λ2.

a) Show that

Â =

(
A1 A1,2

AT1,2 A2

)
, A1,2 = rT1 Ap2 .

Moreover show that Â > 0 and Âi,j > 0 for i, j = 1, 2.

b) It holds that

δ := ‖A−
1
2

1 pT1 Ap2A
− 1

2
2 ‖2 < 1

is the best bound in the strengthened Cauchy-Schwarz-inequality

| < x, y >A | ≤ δ‖x‖A‖y‖A

Hint : Insert x = p1x1, y = p2x2 and show and use ‖pλxλ‖A = ‖A
1
2xλ‖2.

c) Use c) to show that γWadd ≤ A ≤ ΓWadd is equal to

γD ≤ Â ≤ γD

with D being the block-diagonal of Â formed by A1, A2.

d) Apply lemma

For the spectrum of the (weakly) 2-cyclic matrix

B =

(
0 B1

B2 0

)
it holds that

σ(B) = ±
√
σ(B1B2) ∪ ±

√
σ(B2B1) , σ(B1B2) \ {0} = σ(B2B1) \ {0} .

to D−
1
2 (Â−D)D−

1
2 to conclude that

λmin(B) = −δ , λmax(B) = δ , γ = 1− δ Γ = 1 + δ .

e) Follow from d) that

θ = 1 ρ(M1
add) = ‖M1

add‖A = δ

hold for the optimal damping and the resulting convergence rate.

(5 Points)

3

Programming exercise 6. (Efficient sparse prolongation and restriction)

In the previous programming exercise we have already decomposed the vertexes into 3
(non)-overlapping subdomains. However, for the application to our linear system, we
need a decomposition of the indices that are actually active in the resulting linear sys-
tem, i.e. with Dirichlet boundary conditions already introduced and respective vertices
removed from vectors and matrices. Since we want to keep using the same decomposi-
tion for different boundary condition (and different ΓD), we will focus on an approach
of adapting the decomposition to the nodes to the Dirichlet boundary.

We will keep working with the mesh and domain decomposition introduced in the last
programming exercise.

a) Write a function to remove indices i of nodes xi ∈ ΓD on the Dirichlet boundary
from λ ∈ Λ.

Hint : Programming exercise 3a).

b) Write a function to construct the prolonged matrices pλBλrλ for some matrix
Bλ : Xλ → Xλ, in particular Kλ.

Hint : It is easier to prolong to the whole space and then restrict to the free nodes.

Since all the matrices obtained from the Galerkin discretization are sparse, it is highly
inefficient to construct our matrices using full matrices of zeros as a starting point or
array slices that might trigger dense matrices in the background. scipy.sparse offers
the sparse coo matrix matrix format. It offers 3 constructors

• A = coo matrix(B) with B being either a dense or sparse matrix creating a COO
format copy of B

• A = coo matrix(N,M) creating an empty COO format matrix of size N ×M .

• A = coo matrix((data, (i,j)), (N,M)) creating a sparse matrix from the 3
equally sized array data,i,j such that A[i[k],j[k]] = data[k]

This format is inefficient for computation but is easily usable for the construction
of sparse matrices. Moreover, it can be efficiently converted into the csc matrix or
csr matrix formats that are better suited for computations. Also, the underlying ar-
rays are accessible via A.data,A.row,A.col

c) Change the construction of the global stiffness matrix to use coo matrix. Be aware
that the COO format allows multiple data,i,j entries for the same ai,j . When
converting to another format, usually CSR or CSC, duplicate entries are summed
together, which facilitates construction of finite element matrices.

d) Write a function for an efficient computation of Kλ = rλKpλ from the stiffness
matrix K.

e) Write a function for an efficient computation of pλBλrλ for any block matrix Bλ ∈
R#λ×#λ.

f) Use d) to write a function for the computation of Πλ = pλW
−1
λ rλA for a given

regular Wλ, in particular Wλ = Aλ.

g) Compare the times to construct Πλ by using coo matrix compared to array slices
(that might trigger background construction of dense matrices) when using the
L-shaped domain and PDE from the previous programming exercise to give K.

Hint : IPython %timeit magic builtin or timeit module.

(4 Points)

Send to duesseld@ins.uni-bonn.de

4

