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Exercise 22. (Integrated Legendre-polynomials)

Recall that the Legendre-polynomials Ln, which are orthogonal with respect to ω ≡ 1
on (−1, 1) can be given by

Ln(x) =
1

2nn!

dn

dxn
((
x2 − 1

)n)
, (n+ 2)Ln+2(x)− (2n+ 3)xLn+1(x) + (n+ 1)Ln(x) = 0 .

The integrated Legendre-polynomials are given by

L̂n(x) =

∫ x

−1
Ln−1(s)ds , n ≥ 1 ,

the scaled integrated Legendre-polynomials by

K̂n(x) = (−1)nγn

∫ x

−1
Ln−1(s)ds , n ≥ 2

with γi =

√
(2i−3)(2i−1)(2i+1)

4 and

K̂0(x) =
1− x

2
, K̂1(x) =

1 + x

2
.

a) Show the relation

L̂n(x) =
1

2n− 1
(Ln(x)− Ln−2(x)) , ∀n ≥ 2 .

b) Show

L̂n(±1) = 0 , ∀n ≥ 2 .

c) Show the Orthogonality:∫ 1

−1
L̂n(x)L̂m(x)dx = 0 , |n−m| /∈ {0, 2} .

d) Sketch/Plot the first five integrated Legendre-Polynomials L̂n(x) and the first five
scaled integrated Legendre-Polynomials K̂n(x) on the interval [−1, 1]. For an efficient
evaluation of the polynomials use their recursion formulas.

(4 Points )
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Exercise 23. (1D assembly of integrated Legendre-polynomials)

Recall the scaled, integrated Legendre-polynomials K̂n from the previous exercise.

a) Compute the mass matrix entries∫ 1

−1
K̂n(x)K̂m(x)dx .

b) Compute the stiffness matrix entries∫ 1

−1
∇K̂n(x)∇K̂m(x)dx .

c) Compute and assemble the mass and stiffness matrices for p = 5, i.e. using the K̂n,
n = {0, . . . , p} as shape functions.

(3 Points )

Exercise 24. (Gauß-Lobatto quadratue)

In the usual case of piecewise linear FEM, numerical quadrature is done using only
evaluations of the shape functions at the mesh-nodes. This type of quadrature - as you
know - can yield to comparably large errors when used on higher order integrands. It is
better to use e.g. the Gauss quadrature rules of order n, which are exact for integrands
f ∈ P2n+1. These quadrature-rules however use integration nodes that are almost all
contained in the interior of the mesh-cells. This is very unconvenient, since in this case
the values of the problem-dependent coefficients cannot be directly used as function
evaluations for integration purposes.

One way of alleviating this are the Gauß-Radau and Gauß-Lobatto rules.

In the following again consider numerical integration

n∑
i=0

wif(xi) = Q(f) ≈ I(f) =

∫ 1

−1
f(x)dx

with additional constraints of having certain xi being pre-determined. For each of the
following cases, determine, how the orthogonality condition from exercise 3 changes and,
prove the given integration order and predetermined weights.

a) The asymmetric Gauß-Radau rules with x0 = −1 yields

Q−
R(f) =

2

n2
f(−1) +

n∑
i=1

w−
i f(x−i ) ,

and taking xn = 1 leads to

Q+
R(f) =

n−1∑
i=0

w+
i f(x+i ) +

2

n2
f(1).

Show that both quadrature rules are exact for f ∈ P2n. Moreover show that
x−i = −x+n−i and w−

i = w+
n−i.

b) The symmetric Gauß-Lobatto rules with x0 = −1, xn = 1 read

QL(f) =
2

n(n− 1)

[
f(−1) + f(1)

]
+

n−1∑
i=1

wif(xi) .

Show that this rule is exact for f ∈ P2n−1 and that xi = −xn−i, wi = wn−i.

(3 Points )
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Exercise 25. (The Duffy transform)

As we have already seen, quadrature rules and construction of shape functions are more
complicated for triangles than quadrilaterals since no Tensor product approach can be
applied (i.e. no splitting of the multidimensional integration into a sequence of one-
dimensional integrations is possible). The so called Duffy trick/transform is a way to
bypass this.

Consider the reference triangle T and the quadrilateral Q

T = {(x, y) ∈ R2|0 ≤ x, y ≤ 1, x+ y ≤ 1} = ((0, 0), (1, 0), (0, 1)) ,

Q = {(ξ, η) ∈ R2| − 1 ≤ ξ, η ≤ 1} = ((−1,−1), (1,−1), (1, 1), (−1, 1)) .

The nodal shape functions and barycentric coordinates on T are given as

λ0 = 1− x− y , λ1 = x , λ2 = y .

Consider the Duffy transform

D : Q→ T , (ξ, η) 7→ (
1

4
(1 + ξ)(1− η),

1

2
(1 + η)) .

a) Compute the inverse D−1 and the Jacobian | det(∇D−1)| of the transform.

b) Compute the inverse map D−1 in terms of the barycentric coordinates of T .

c) How does a 2D tensor product quadrature rule

Q2(f) =
n∑

i=0

n∑
j=0

wiwjf(xi, xi)

of some 1D quadrature rule
∫ 1
−1 f(x) ≈

∑n
i=0wif(xi) translate to T via D?

(2 Points )
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Programming exercise 8. (Red-Green refinement)

For many problems the initial mesh of the domain Ω might need to get partially re-
fined after initial mesh creation. For example, some error estimator might warrant the
partial refinement near a singularity of the solution, e.g. near a so called re-entrant
corner. However, special care must be taken to ensure that the resulting mesh is still an
admissible triangulation, e.g. no hanging nodes etc.

One strategy is so called red-green refinement based on bisection of edges.

• A triangle with vertices (a0, a1, a2) will be red-refined by splitting it into the 4
congruent triangles

(a0,
1

2
(a0 + a1),

1

2
(a0 + a2)) ,(a1,

1

2
(a1 + a2),

1

2
(a0 + a1))

(a2,
1

2
(a0 + a2),

1

2
(a1 + a2)) ,(

1

2
(a0 + a1),

1

2
(a1 + a2),

1

2
(a0 + a2)) .

The shape of the triangles does not change.

• A triangle (a0, a1, a2) with a hanging node on a single edge, say 1
2(a1 + a2) is

green-refined by splitting it into the 2 triangles

(a0, a1,
1

2
(a1 + a2)) , (a2, a0,

1

2
(a1 + a2))

The new edge is a so called green edge. The new triangles have a different shape.

These are combined in the following algorithm.

1. If there has already been a red-green refinement done before, remove all green
edges from the mesh.

2. Red-refine all triangles marked for refinement, e.g. by some error estimator.

3. Red-refine all triangles with 2 or more hanging nodes existing on their edges.
Repeat this step until all triangles have at most 1 hanging node on their edges.

4. Green-refine all remaining triangles with 1 hanging node. Mark the new edge green
and save for later removal.

This procedure can be put into code in the following steps.

a) Write a function to red refine a predetermined triangle by appending new vertices to
existing ones and replacing the triangle by its 4 congruent children.

b) Similarly, write a function to green refine a predetermined triangle.

c) Combine a) and b) to implement the red-green refinement of a mesh.

d) Create a 2-level refinement of the mesh of the L-shaped domain (−1, 1)2 \ (0, 1)2

from programming exercise 5a). First red-green refine with all triangles in (−0.5, 0.5)2

marked for refinement in a first level and all triangles inside (−0.25, 0.25)2 in a second
level.

Hint : It is easier to create a new list and copy over elements not marked for deletion
than to delete elements from a list while iterating over it.

(4 Points )

Send to duesseldorf@ins.uni-bonn.de
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