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Exercise 35. (Bézier curves)

We introduce a special case of B-spline basis functions commonly used for graphics
applications, the so called Bézier curves. To emphasize the dependence of the B-spline
functions Ni,p on the knots ξi, . . . , ξi+p+1 we introduce the notation

Ni,p(ξ) = N(ξ|ξi, . . . , ξi+p+1) .

Based on the interval [0, 1] 3 ξ, d > 0 and the d + 1 control points ci, i = 0, . . . , d we
define the degree d Bézier curve through the points ci via the recursion

pi,0(ξ) = p(ξ|ci) := ci

pi,r(ξ) = p(ξ|ci−r, . . . , ci)
:= (1− ξ)p(ξ|ci−r, . . . , ci−1) + ξp(ξ|ci−r+1, . . . , ci)

= (1− ξ)pi−1,r−1(ξ) + ξpi,r−1(ξ)

(1)

for i = r, . . . , d and r = 1, 2, . . . , d.

A composite Bézier curve on [0, N ] is then obtained by taking control points cji , . . . , c
j
d

for j = 1, . . . , N with

cj−1d = cj0 , j ∈ {2, . . . , N}
p(ξ) = p(ξ − j|cj0, . . . , c

j
d) , ξ ∈ [j − 1, j]

Show the following.

a) It holds that

pd,d(ξ) =
d∑
i=0

Bi,d(ξ)ci where Bi,d(ξ) :=

(
d

i

)
ξi(1− ξ)d−i .

The Bi,d are referred to as Bernstein polynomials.

b) The Bernstein polynomials are special cases of B-splines, except for the cutoff outside
[0, 1), namely

Bi,d(ξ)N(ξ|0, 1) = N(ξ| 0, . . . , 0︸ ︷︷ ︸
d+1−i

, 1, . . . , 1︸ ︷︷ ︸
i+1

)

for i = 0, . . . , d.

They fulfill the recursion

Bi,d(ξ) = ξBi−1,d−1(ξ) + (1− ξ)Bi,d−1 .
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c) The curve pd,d interpolates the first and last control points c0 and cd.

pd,d(0) = c0 , pd,d(1) = cd .

d) The tangents at the ends points c0, cd point in the direction from c0 to c1 and cd−1
to cd.

p′d,d(0) = d(c1 − c0) , p′d,d(1) = d(cd − cd−1)

e) A composite Bézier curve of degree d > 0 will be C1 continuous if and only if for all
1 < j ≤ N

cj−1d − cj−1d−1 = cj1 − c
j
0

(4 Points )

Exercise 36. (NURBS)

A commonly found extension of B-Splines and B-Spline curves that allows for the perfect
representation of all conic section, e.g. circles, are NURBS (Non-uniform rational B-
spline). In addition to knots ξ1, . . . , ξi+p+1 and control points B1, . . . , Bn we now have
non-negative weights w1, . . . , wn.

With rational basis functions

Ri,p(ξ) :=
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

the NURBS curve to control points Bi is given as

D(ξ) :=

N∑
i=1

Ri,p(ξ)Bi

Most properties carry over from B-splines, if necessary replacing polynomials with ra-
tional functions. Among the additional properties we have the following.

a) Show that

Ri,p(ξ;wi → 0) = 0 , Ri,p(ξ;wi →∞) = 1 , Ri,p(ξ;wj →∞, j 6= i) = 0 .

Moreover, if wi →∞ then

Figure 1: (left) Euclidean model of the projective plane. (b) Geometric construction of
NURBS curves.
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b) NURBS with Bi = (bi,j)
d
j=1 ∈ Rd can be interpreted as B-Splines with B̃i =

(wibi,1, . . . , wibi,d, , wi) ∈ Rd+1 projected to the plane Rd × {1} with a projective
transformation through O = (0, 0, 0). For ease of notation and visualization we re-
strict ourselves to Bi = (xi, yi) ∈ R2, B̃i = (wixi, wiyi, wi) ∈ R3, see also Figure
1. Denote the coordinate axes of R3 with X,Y and W and let x, y be the axes of
another coordinate system centered at (X,Y,W ) = (0, 0, 1) ∈ R3 with x parallel to
X and Y parallel to Y . We call the plane spanned by the x, y axis the projective
plane. Every point P ′ in the projective plane determines a line OP ′, and every line
passing through O not lying in the X,Y plane determines a point in the projective
plane. This line can be defined by any point P or Q and any of its coordinates
(XP, Y P,WP ), (XQ,Y Q,WQ) ∈ R3, so called homogeneous coordinates of P ′, de-
fine the same line through P ′. The perspective/projective mapping of R3 \ {W = 0}
into the projective plane is given by

(x, y) = ϕ(X,Y,W ) =
1

W
(X,Y ) .

Show that, with the regular, nonrational, B-spline curve

C̃(ξ) =
N∑
i=1

Ni,p(ξ)B̃i

yields, using the perspective mapping ϕ the NURBS curve in R2 (not to be confused
with the projective plane (x, y, 1))

D(ξ) = ϕ(C̃(ξ)) .

c) The circle can be given as the quadratic NURBS curve with

Ξ := {0, 0, 0, 1

4
,
1

2
,
1

2
,
3

4
, 1, 1, 1} ,

Bi := {(1, 0), (1, 1), (−1, 1), (−1, 0), (−1,−1), (1,−1), (1, 0)} ,

(wi)
7
i=1 := {1, 1

2
,
1

2
, 1,

1

2
,
1

2
, 1} .

(3 Points )
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Exercise 37. (MLS again)

We have already considered the Moving least squares approximation based on a non-
negative weight W , a local approximation space P = span〈ϕj〉dj=1, and data (xi, fi)

N
i=1

in exercise 34 but have not shown all related properties. In particular, we have not
yet established a relationship between the pointwise minimization of Jx and the linear
system Gxux = fx.

First we introduce some notions sufficient for Gx to be invertible. For each x define it’s
neighbourhood of relevant data nodes

N(x) := {xi : W (x− xi) > 0} .

We call this neighbourhood P -unisolvent if for all φ ∈ P the implication

φ|N(x) = 0⇒ φ ≡= 0

holds. In the following, assume that N(x) is P -unisolvent.

a) Show that the necessary condition for πx minimizing Jx

δπJx(πx) =
d

dε
Jx(πx + επ)|ε=0

!
= 0

of a vanishing first variation is equivalent to

Gxux = fx , πx =

d∑
j=1

ux,jϕi

when using the basis ϕj of P .

b) Show that assuming N(x) to be P -unisolvent implies that Gx is positive definite.
Thus, the unique solution of Gxux = fx is well defined.

c) For the Shepard approximation with P = span〈ϕ1 ≡ 1〉, find a simplified expression
guaranteeing N(x) being P -unisolvent for each x ∈ Ω.

d) The MLS approximation also admits basis functions. Define the coefficients vector
αx = (αx,j)j=1,...,d as the unique solution of the system

Gxαx = P (x) = (ϕj(x))dj=1 .

Then it holds that

π(x) = πx(x) =

N∑
i=1

fiφi(x)

with basis functions

φi(x) := Wi(x)
d∑
j=1

αx,jϕj(xi) .

Hint : πx(x) =
∑d

j=1 ux,jϕi(x) =
∑d

j=1 ux,j(Gxαx)j = . . ..

e) Compute φi for the Shepard approximation and show that
∑
φi ≡ 1.

(5 Points )
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Programming exercise 12. (TrueType fonts)

One commonly used application of Bézier curves and, thus, B-splines is in everyday font
rendering. Excluding hinting and rasterization, each glyph (picture of character) of a
font in TrueType format is defined by a series of contours given by a composite quadratic
Bézier curves.

Each contour is given as a list of points ci = (xi, yi), i = 1, . . . , N with N depending on
the particular contour and the following conventions.

1. Contours are closed, i.e. if cN , c1 are connected and cN−1, cN , c1, c2 are treated the
same way as c1, c2, c3, c4.

2. Each point ci is labeled with zi as on-curve (zi = 1) and off-curve (zi = 0).

3. Consecutive on-curve points ci, ci+1 with zi = zi+1 = 1 are connected by a straight
line segment p(ξ|ci, ci+1) or, in other words with the implied off-curve points ci+ 1

2
=

1
2(ci, ci+1) on the midpoint giving p(ξ|ci, ci+ 1

2
, ci+1) = p(ξ|ci, ci+1).

4. The contour description may consist entirely of on-curve points.

5. Triplets beginning and ending at on-curve points and passing through one off-
curve points, i.e. ci, ci+1, ci+2 with zi = zi+2 = 1, zi+1 = 0, are connected with the
quadratic Bézier curve p(ξ|ci, ci+1, ci+2).

6. Consecutive off-curve points ci, ci+1 with zi = zi+1 = 0 have an implied on-curve
point in their middle ci+ 1

2
= 1

2(ci + ci+1), zi+ 1
2

= 1. This is related to 35e).

7. The contour description may consist entirely of off-curve points.

For example with N = 4, z1 = 1, z2 = 1, z3 = 0, z4 = 0 we have the following outline.

1. There is an implied on-curve point c3 1
2

= 1
2(c3 + c4), z3 1

2
= 1.

2. c1 is connected to c2 with the straight line p(ξ|c1, c2).

3. c2 is connected to c3 1
2

with the quadratic Bézier curve p(ξ|c2, c3, c3 1
2
.

4. c3 1
2

is further connected to c1 with the quadratic Bézier curve p(ξ|c3 1
2
, c4, c1) closing

the contour.

On the website find the python file glyphs.py including a list glyphs with definitions
of xi, yi, zi for contours of 3 glyphs from Times New Roman. The file also draws the
control polygon of each glyph to exemplify the use of this list.

a) Write a function to add implied on-curve points to consecutive off-curve points of a
single contour.

b) Write a function to evaluate the Bézier curve using the Casteljau algorithm given
directly in the recursive definition (1).

c) Draw the contours of the 3 TrueType glyphs given in the glyphs array.

(4 Points )

Send to duesseldorf@ins.uni-bonn.de
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