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Exercise 35. (Bézier curves)

We introduce a special case of B-spline basis functions commonly used for graphics
applications, the so called Bézier curves. To emphasize the dependence of the B-spline
functions IV; , on the knots &;, ..., &+p+1 We introduce the notation

Nip(&) = N(El&is - Sivpr1) -

Based on the interval [0,1] 3 &, d > 0 and the d + 1 control points ¢;,i = 0,...,d we
define the degree d Bézier curve through the points ¢; via the recursion

pio(§) = p(€lei) == ¢
pir (&) = p(€lcir, ... i)
= (1 =&plci—r, ..., ci-1) +EpElci—ryt, ..., ci)
= (1 =&pi—1,-1(&) +Epir—1(§)
fori=r,...,dand r=1,2,...,d.

A composite Bézier curve on [0, N| is then obtained by taking control points cg, e
for j=1,..., N with

.

=4, jef{2,....,N}
p(&) = p(& —jleb, ..., ), ¢elj—1,7]

Show the following.

a) It holds that

d d\ ,
P =Y B where Bt (j)ea-on

The B; 4 are referred to as Bernstein polynomials.

b) The Bernstein polynomials are special cases of B-splines, except for the cutoff outside
[0,1), namely
Bl,d(f)N<£‘0a 1) = N(&’ 07 cee 707 17 ey 1)
—— ——
d+1—i i+1
fori=0,...,d.

They fulfill the recursion

Bia(§) =€&Bi—1,a-1(§) + (1 = &) Bjag-1 -



c¢) The curve pqq interpolates the first and last control points ¢y and cq.
pa,a(0) = co , pad(l) =cq .

d) The tangents at the ends points ¢y, cg point in the direction from ¢y to ¢; and ¢q_1
to cq.

pél,d((]) =d(c1 — o) , p&,d(l) = d(cq — cd4-1)

e) A composite Bézier curve of degree d > 0 will be C'! continuous if and only if for all
1<j<N
- - . .
CZl - Cilfl = C{ - Cg)
(4 Points )

Exercise 36. (NURBS)

A commonly found extension of B-Splines and B-Spline curves that allows for the perfect
representation of all conic section, e.g. circles, are NURBS (Non-uniform rational B-
spline). In addition to knots &1, ..., &4+p+1 and control points By, ..., B, we now have
non-negative weights wi, ..., wy,.

With rational basis functions

e Nip(©uw;
Rz,p(f) : Z?:I Nj,p(ﬁ)wj

the NURBS curve to control points B; is given as

N
D(&) =Y Rip(&)B
i=1

Most properties carry over from B-splines, if necessary replacing polynomials with ra-
tional functions. Among the additional properties we have the following.

a) Show that

Ri,p(g;wi — 0) =0 ) Rz,p(§7wl — OO) =1 ) Ri,p(g; wy — OO,j # Z) =0.

Moreover, if w; — oo then
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Figure 1: (left) Euclidean model of the projective plane. (b) Geometric construction of
NURBS curves.



b) NURBS with B, = (bi,j)?zl € R? can be interpreted as B-Splines with B; =
(wibi, ..., wib;q,,w;) € R4 projected to the plane R? x {1} with a projective
transformation through O = (0,0,0). For ease of notation and visualization we re-
strict ourselves to B; = (z;,y;) € R2 B; = (wizs, wiys, w;) € R3, see also Figure
1. Denote the coordinate axes of R? with X,Y and W and let z,y be the axes of
another coordinate system centered at (X,Y, W) = (0,0,1) € R? with x parallel to
X and Y parallel to Y. We call the plane spanned by the x,y axis the projective
plane. Every point P’ in the projective plane determines a line OP’, and every line
passing through O not lying in the X, Y plane determines a point in the projective
plane. This line can be defined by any point P or ) and any of its coordinates
(XP,YP,WP),(XQ,YQ,WQ) € R3, so called homogeneous coordinates of P’, de-
fine the same line through P’. The perspective/projective mapping of R?\ {W = 0}
into the projective plane is given by

(r,9) = (X, Y, W) = (X, ¥)

Show that, with the regular, nonrational, B-spline curve
~ N ~
C(€) =) _ Nip(6)Bi
i=1

yields, using the perspective mapping ¢ the NURBS curve in R? (not to be confused
with the projective plane (z,y,1))

D(¢) = o(C(¢)) -

c¢) The circle can be given as the quadratic NURBS curve with

1113
== - =, —,—,1,1,1
{0)0)0)47252547 ) Ly }a
B; = {(1,0), (17 1)7 (_17 1)> (_1>O)a (_17 _1)7 (17 _1)> (LO)} )
11 11
(wi)Z:l {175)571557571} .

(3 Points )



Exercise 37. (MLS again)

We have already considered the Moving least squares approximation based on a non-

negative weight W, a local approximation space P = span<g0j>§l:1, and data (x;, fi)XY,

in exercise 34 but have not shown all related properties. In particular, we have not
yet established a relationship between the pointwise minimization of J, and the linear
system Gpu, = f5.

First we introduce some notions sufficient for G, to be invertible. For each = define it’s
neighbourhood of relevant data nodes

N(z) :=A{x;: W(x —2;) > 0} .
We call this neighbourhood P-unisolvent if for all ¢ € P the implication
(b‘N(CC) =0=¢==0

holds. In the following, assume that N (z) is P-unisolvent.

a) Show that the necessary condition for 7, minimizing .J,

d

of a vanishing first variation is equivalent to

d
Gruz = fz , Ty = § Ug, iP5
Jj=1

when using the basis ¢; of P.

b) Show that assuming N(x) to be P-unisolvent implies that G, is positive definite.
Thus, the unique solution of G u, = f, is well defined.

c¢) For the Shepard approximation with P = span(p; = 1), find a simplified expression
guaranteeing N (x) being P-unisolvent for each x € Q.

d) The MLS approximation also admits basis functions. Define the coefficients vector
ay = (@z,5)j=1,..,4 as the unique solution of the system

Grap = P(.%) = ((pj(x))?:l :

Then it holds that
N
m(@) = (@) = Y fii(x)
i=1
with basis functions

d
$i(x) = Wi(2) Y o jipj(s) -
=1

Hint: 7p(z) = Z?Zl Uz jpi(x) = Z;-lzl Uz i (Grag)j = .. ..

e) Compute ¢; for the Shepard approximation and show that > ¢; = 1.
(5 Points )



Programming exercise 12. (TrueType fonts)

One commonly used application of Bézier curves and, thus, B-splines is in everyday font
rendering. Excluding hinting and rasterization, each glyph (picture of character) of a
font in TrueType format is defined by a series of contours given by a composite quadratic
Bézier curves.

Each contour is given as a list of points ¢; = (z;,¥;),i = 1,..., N with N depending on
the particular contour and the following conventions.

1. Contours are closed, i.e. if ¢y, ¢1 are connected and cy_1, ¢y, c1, co are treated the
same way as Ci1,C2,C3,C4.

2. Each point ¢; is labeled with z; as on-curve (z; = 1) and off-curve (z; = 0).

3. Consecutive on-curve points ¢;, ¢;11 with z; = 2,11 = 1 are connected by a straight
line segment p(¢|c;, ¢;11) or, in other words with the implied off-curve points ¢; | 1 =
2

3(ci, ciy1) on the midpoint giving p(€|c;, Ciy s Cit1) = p(&leis cita)-
4. The contour description may consist entirely of on-curve points.

5. Triplets beginning and ending at on-curve points and passing through one off-
curve points, i.e. ¢;, ¢iy1, G2 wWith z; = 2,40 = 1, 2,11 = 0, are connected with the
quadratic Bézier curve p(&|c;, ¢it1, Cit2)-

6. Consecutive off-curve points ¢;, ¢;11 with z; = z;41 = 0 have an implied on-curve
point in their middle ¢; 1 = $(ci + ci), z;,1 = 1. This is related to 35e).
2 2

7. The contour description may consist entirely of off-curve points.
For example with N =4,21 = 1,290 = 1,23 = 0, 24 = 0 we have the following outline.

1. There is an implied on-curve point c;1 = %(03 +cq), 251 = 1.
2

1
2
2. ¢ is connected to co with the straight line p(£|cy, c2).

3. c2 is connected to €31 with the quadratic Bézier curve p(|c, s, €31

4. cg1 is further connected to c; with the quadratic Bézier curve p(€|cs1, ¢4, ¢1) closing
2 2
the contour.

On the website find the python file glyphs.py including a list glyphs with definitions
of z;,y;, 2; for contours of 3 glyphs from Times New Roman. The file also draws the
control polygon of each glyph to exemplify the use of this list.

a) Write a function to add implied on-curve points to consecutive off-curve points of a
single contour.

b) Write a function to evaluate the Bézier curve using the Casteljau algorithm given
directly in the recursive definition (1).

c¢) Draw the contours of the 3 TrueType glyphs given in the glyphs array.
(4 Points )
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