
Prof. Dr. Michael Griebel

Prof. Dr. Jochen Garcke

Dr. Bastian Bohn

Jannik Schürg

3
PR INC IPAL COMPONENT ANALYS I S

Send your solutions

to this chapter’s tasks

until

December 1st.

A typical phenomenon of datasets is redundancy. From a statistical

perspective, one could say, that the measured variables in our data

are typically not independent but correlated. The consequence is that

knowing a small number of values derived from our measured vari-

ables might already describe the full dataset. Thus, the allegedly high-

dimensional representation ofmany datasets is not theirmost compact

form.
1
This redundancy is a commonpractical observation, and itmoti-

vates several questions. Vaguely speaking, one tries to find a mapping

into a lower dimensional representation space which preserves (or se-

lects) the relevant information. In this and following chapter, we will

look into two methods which are examples for such mappings. Both

belong to the domain of dimensionality reduction methods, which are

essential tools in data science.

A difference in methodology to the previous chapters is that no

simple solution criterion is usually known.While any good solution for

a regression problemwill provide a good approximation to the ground

truth f , in dimensionality reduction there is often no single best answer.

Two representations could capture or highlight different aspects of the

data and might be useful for various applications. One could say that

the condition “preserves information” or “reduces redundancy” leaves

more space for different objective functions to minimize, which might

also depend on the task at hand.

3.1 reasons for reducing the dimension

The dimension d of a set of measurements can be too big by several

means. For example, it can be too big to understand: A typical task

for a given dataset is to answer a specific question or to gain new

insights about innerworkings. Here, a good visualization is a powerful

tool to develop an idea or intuition on what is happening. The more

dimensions our data has, the more challenging it is to visualize it.

1 If you think of data compression you are not too far off, e.g. the term redundancy

is also defined in information theory—which by the way provides a more rigorous

investigation into terms we here use vaguely.

25

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=25&vcs=591a74de&obj=Script


26 principal component analysis

While finding a suitable visualization is a topic on its own,
2
reducing

the dimension can be a helpful start.

A computational reason for reducing d is scaling behavior. The run-

time of many algorithms scales polynomially or even exponentially in

the dimension of the input data. Furthermore, some methods do not

perform well in high dimensions. We already saw for example that

the k-nearest neighbors algorithm does only work for low dimensional

data.

Therefore, dimensionality reduction as a preprocessing step can pro-

vide more expressive features for a learning algorithm. Another exam-

ple would be non-linearly separable input whose low dimensional

representation is linearly separable. Also, keep in mind that a low

dimensional representation can be a regularization entailed by the re-

duction algorithm. The reason is that the algorithm usually enforces a

particular model assumption.

In this sheet, we look at representations gained through a linear

transformation.

linear representations

Suppose we conducted an experiment and gained measurements in

two variables, X1 and X2. The plotted values might look as in fig. 3.1.

The data is two dimensional but visibly correlated: If X1 is large so

is X2 (i.e., the covariance is positive). In this case, one might reduce

the dimension to 1 and use a fitted line where each measurement is

projected onto the line.

Figure 3.1: Plot of two measured variables in an experiment.

Then, the 1D values will be the points on this line, where we think

of the line as a new axis. There is some freedom in this representation,

2 The books of Edward R. Tufte might be useful for more information on great visual-

ization from graphics design perspective.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=26&vcs=591a74de&obj=Script


3.2 derivation of pca 27

namely in picking the center of this axis. Different centers will shift the

1D values.

We might be interested in two things in the calculation. The first

could be the line itself corresponding to the mapping into a low di-

mensional representation, and the second would be the projections of

our data onto this line, i.e., the coordinates w.r.t. the new axis.

In higher dimensions, it might not be sufficient to have only one

axis (e.g., a plane in 3D). So generally we are interested in the set of

orthogonal axes which can represent the most variation in the data.

3.2 derivation of pca

In this chapter, we look into the classic method of principal component

analysis (PCA). Despite its age [4, 7], it is the most popular method for Skip to theorem 3.1.

linear dimensionality reduction.

The goal is to find a linear transformation P : Rd → Rq
, with q < d,

for a set of data points {xi}n
i=1 ⊂ Rd

such that the new coordinates in

Rq
describe the data (approximately).

More precisely we try to find a linear affine model f : Rq → Rd
s.t.

f (λi) = µ + Vqλi, (3.1)

where Vq ∈ Rd×q
is a matrix whose columns form an orthonormal

basis, µ ∈ Rd
is a location vector, and λi = P(xi) are q dimensional

coordinate vectors for the inputs xi, i = 1, . . . , n.
We fit the model using the least squares error

n

∑
i=1
‖xi − (µ + Vqλi)‖2

with respect to µ, Vq and λi.

To solve the system, first split up the optimization problem as

min
µ,Vq,{λi}

n

∑
i=1
‖xi − (µ + Vqλi)‖2 = min

Vq
min
µ,{λi}

n

∑
i=1
‖xi − (µ + Vqλi)‖2.

Wesolve the innerproblembyusing thefirst ordernecessaryoptimality

condition

n

∑
i=1

(µ− xi + Vqλi) = 0,

V>q Vqλi −V>q (xi − µ) = 0 for i = 1, . . . , n,

which is also a sufficient optimality criterion in this case since the

objective function is convex.

With V>q Vq = Iq this is equivalent to(
Id −VqV>q

)
µ =

(
Id −VqV>q

)
x, Here x = 1

n ∑n
i=1 xi

denotes the mean.

(3.2)

λi = V>q (xi − µ) for i = 1, . . . , n.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=27&vcs=591a74de&obj=Script


28 principal component analysis

The system in eq. (3.2) is under-determined (for q < d). The matrix

Id −VqV>q is the projection
3
on the orthogonal complement V⊥q . Since

x is a solution, all solutions to eq. (3.2) are of the form µ = x+ span(Vq).

So a solution to the inner minimization problem is

µ = x and λi = V>q (xi − x) for i = 1, . . . , n.

This leaves us with

min
Vq

n

∑
i=1
‖
(
Id −VqV>q

)
(xi − x)‖2

subject to V>q Vq = Iq.

So we minimize the projection error onto the subspace
4
spanned by

the columns in Vq. It is straightforward to calculate that the above

minimization is equivalent to

max
Vq

n

∑
i=1
‖V>q (xi − x)‖2

subject to V>q Vq = Iq. (3.3)

Let X ∈ Rn×d
be the matrix with rows (xi − x)>, and denote the

columns of Vq by vi.

Clearly, for any solution Vq we would obtain new solutions by com-

posing with an orthogonal transformation. To encode further seman-

tics we look for a solution Vq such that the matrices Vk containing

the first k ≤ q columns are a solution to the corresponding smaller

problems

max
Vk

n

∑
i=1
‖V>k (xi − x)‖2

subject to V>k Vk = Ik.

In this way, the columns are ordered w.r.t. their contribution to the

error reduction.

Using Lagrange multipliers and induction over q, one can show that

such an optimal solution must fulfill(
X>X

)
vk = λkvk for k = 1, . . . , q,

for some λk ∈ R, k = 1, . . . , q. So the columns vi of Vq must be eigen-

vectors of X>X.
Now consider the singular value decomposition (SVD) of X:

X = UDW> with D = diag(σ1, . . . , σd),

(such that σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0).

One can see that the columns of W are eigenvectors of X>X with

eigenvalues σ2
1 , . . . , σ2

d .

3 This is exactly the term in Gram-Schmidt.

4 This can be also seen as the reconstruction error from going to the low dimensional

representation and back, as in the original introduction of PCA [7].

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=28&vcs=591a74de&obj=Script


3.2 derivation of pca 29

Since the columns of W and of Vq form an orthonormal basis, we can
Effectively, we now

pick a SVD

matching our

orthonormal basis

vectors from Vq. The

SVD is not unique

in W and U.

find a family of orthogonal maps
5 FVq such that the image of all basis

vectors from W includes the basis vectors of Vq, and all eigenspaces

map into themselves. We denote with Ŵ := FVq(W) the matrix whose

columns are mapped column–wise, and we obtain the SVD

X = ÛDŴ>,

for an orthogonal matrix Û which can be derived from D and Ŵ.

So V>q Ŵ ∈ Rq×d
is a permutation matrix. For any vector z follows

‖V>q Ŵz‖2 = ∑
k∈Γ

z2
k, (3.4)

for certain indices Γ ⊆ {1, . . . , d}. We obtain

n

∑
i=1
‖V>q (xi − x)‖2 =

n

∑
i=1
‖V>q ŴD>Û>ei‖2

=
n

∑
i=1

∑
k∈Γ

(σkÛi,k)
2

(use eq. (3.4))

= ∑
k∈Γ

σ2
k . (columns of Û have norm 1)

Therefore, we can solve the problem from eq. (3.3) by letting the

columns of Vq be orthogonalized unit eigenvectors belonging to the q
largest eigenvalues.

Let us summarize this in the following Theorem.

Theorem 3.1. Let {x1, . . . , xn} be a set of vectors from Rd
, and let q ∈ N

with q ≤ d. The minimization problem

min
µ∈Rd,λi∈Rq,

Vq∈Rd×q

n

∑
i=1
‖xi − (µ + Vqλi)‖2

subject to V>q Vq = Iq

is solved for µ = x, λi = V>q (xi − x), and Vq contains column-wise q
orthogonalized unit eigenvectors of X>X for the q largest eigenvalues.

Remark. The solution is not unique. The orthonormal basis of each

eigenspace is only unique up to an orthogonal transformation (compo-

sition of reflections).

3.2.1 Numerical Computation

We have seen two basic problems we could solve to get a PCA:

1. Compute eigenvectors of X>X.

5 Complete the basis Vq, then the linear map that maps the corresponding basis vectors

on to each other does the job.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=29&vcs=591a74de&obj=Script


30 principal component analysis

2. Compute a singular value decomposition of X.

Of course, both are relatedand several solvers exist for each.Anoptimal

choice might depend on the size of n, p, and d, and if speed is more

important than accuracy.

Let us implement the PCA and test it on a toy example we under-

stand. The accompanyingmaterial includes a Jupyter notebook which

should be used as a template for your solution. The material also in-

cludes the datasets and some Python code you may use. Please check

the README file for further details.

Task 3.1.
Also check if the

routine returns

eigenvectors as

columns or rows!

Implement a PCA routine whose inputs are {x1, . . . , xn} and q.
Use a NumPy/SciPy routine to compute either eigenvectors directly or use a

SVD. In the case of eigenvectors, make sure your routine does actually return

an orthonormal basis (consult the documentation of your solver).

The toy example is a 2D dataset which is embedded into 4D by

rotating and translating it, also noise was added. We would like to

recover the 2D representation. Each point in the dataset is labeled

among five categories. We also check the results we get for non-linear

data.

Task 3.2. Test your PCA implementation on the provided toy dataset.

a) Plot a slice of the 4D toy data. Compute the PCA representation for

q = 2 and plot it as described in the notebook. To check your result: The

plot should reveal a perfectly round and familiar shape.

b) Map the 2D representation onto a distorted ellipse in 3D, the code for

the transformation is provided. Do a PCA of this 3D data for q = 2 and

plot the result. Repeat this for a few ellipses and describe in words how

the PCA does pick the coordinate system Vq.

3.3 statistical perspective

The method we described is known by several names. The name PCA

is especially popular in statistics [4]. We quickly sketch the statistics

approach to get another perspective of the method.

Suppose we have a vector–valued random variable X̂ ∈ Rd
. The

covariance matrix is a real d× d matrix and it is defined as

Cov[X̂]ij := E
[
(X̂i −E[X̂i])(X̂j −E[X̂j])

]
.

To simplify notation we assume that X̂ has zero mean, so

Cov[X̂] = E[X̂>X̂].

Let v1 ∈ Rd
be a vector with unit-norm. We consider the real ran-

dom variable Y1 defined by Y1 := v>1 X̂. We now wish to maximize its

variance

Var[Y1] := E
[
(Y1 −E[Y1])

2] = E[Y2
1 ]

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=30&vcs=591a74de&obj=Script


3.3 statistical perspective 31

w.r.t. to the direction v1. This is motivated by the idea, that since the

variance is a measure of howmuch a random variable varies, we want

to find the direction along which our data varies the most. This direc-

tion is defined to be a the first principal component.

The idea is iteratively continued by searching normed directions

v2, v3, . . . , perpendicular to all previous ones, while maximizing the

variance subject to

Var[v>1 X̂] ≥ Var[v>2 X̂] ≥ . . . .

It turns out that a solution is given by picking eigenvectors ofE[X̂>X̂]
belonging to the largest eigenvalues. Moreover, the eigenvalues λi are

equal to the variances of the random variables Yi.

The dots to our derivation can be connected by switching to approx-

imations of the expected values using observed values (samples) for X̂,
which we shall denote by x1, . . . , xn. Following this idea we notice that

the singular values from above fullfil σ2
i ≈ λi = Var[Yi].

A common approach on how to decide how large q should be chosen,

is to look at the variances σ2
i . Oneusually picks q as the smallest number

such that σ2
i is below a given threshold, or such that the percentage of

captured variance
6

∑
q
i=1 Var[v>i X̂]

Var[X̂]
=

∑
q
i=1 λi

∑d
i=1 λi

≈ ∑
q
i=1 σ2

i

∑d
i=1 σ2

i

(3.5)

is above a given threshold.

We revisit the Iris dataset to check how PCA can be utilized there.

Task 3.3. Use PCA for the Iris dataset:

a) Compute all (four) singular values of X
Do not forget to

square the singular

values.

using a suitable function from

NumPy. Compute the captured variance percentage from eq. (3.5)when

using only the first principal component, and for the first two principal

components.

b) Compute the PCA transformation onto the first two principal compo-

nents of the Iris dataset. Plot the transformed data in a 2D scatter plot

such that the three labels are distinguishable. Do the same for 1D and

use the provided function to plot it. What do you observe?

c) Using the insights from the visualization in b) build classifiers for the

whole Iris dataset which use a 4D, 2D, or 1D PCA respectively as the

first step, and two linear SVMs as a second and third step to classify a

data-point as one of the three labels. You can copy your SVM code from

sheet 2, but we recommend using scikit-learn.

With a better understanding of PCA we now turn our attention to

the analysis of a larger dataset.

6 Also known as percentage of explained variance.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=31&vcs=591a74de&obj=Script


32 principal component analysis

Figure 3.2: Ten pedestrian images and ten garbage (non-pedestrian) images

from the dataset.

3.4 pedestrian classification

Detectingpeople invideo footage is a topic interesting formanyentities.

One important application would be in the self-driving car industry.

The task can be split broadly into several connected steps:

• How to gather the image material.

• Find region proposals in an image which could be interesting.

• Decide if a given region shows a pedestrian.

We dive deeper into the last problem. The second step is known as a

segmentation problem in computer vision, it is also tackled as an unsu-

pervised learning problem.

Our dataset consists of labeled pictures of size 100x50 pixel, it is

derived from the TUD dataset [8]. Half of the pictures show a pedes-

trian, the other half does not. A separation into training and test data

is provided. We begin by preparing the data.

Task 3.4. Prepare the data.

a) Load the test and training images into NumPy arrays. The template

contains a routine which will help you. Normalize the pixel values to

[0, 1].

b) Write a routine plot_im to plot an image usingMatPlotLib’s imshow

(to get consistent contrast, provide constant values for its arguments

vmin and vmax). Create a plot with ten randomly chosen training

images showing a pedestrian and ten randomly chosen training images

not showing a pedestrian. You can use the subplot method
7
from

MatPlotLib.

Our training data consists of n = 2000 points, with dimension d =

15000 (the pixels of an image for three colors). Compared to what we

7 You should implement an optional argument ax for plot_im, so you can use it for the

subplot, see plt.gca().

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=32&vcs=591a74de&obj=Script


3.4 pedestrian classification 33

saw so far, one could say that the dimension is quite large. Arguably,

visualization of a single data-point, i.e., image, is straight-forward, but

our goal is to classify the images using the color values of the pixels.

Trying to find an algorithm by just looking at the numbers is hard.
8

Unsurprisingly, our next step is to compute a PCA to reduce d to a

much smaller number. Note that the coordinate axes calculated by the

PCA can be interpreted as images and we represent the data in terms

of coefficients for the corresponding eigenvectors, which are called

eigenpedestrians.

Task 3.5. Take a look at the eigenpedestrians. From now on use the PCA

implementation of scikit-learn.

a) Compute the PCA with q = 200 for the full training set (i.e., with

pedestrian and non-pedestrian samples combined).

b) Plot the first 20 eigenpedestrians, as well as eigenpedestrians 50 to 60

and eigenpedestrians 100 to 110. What do you observe? Provide a guess

on what these eigenpedestrians might encode.

We now use our PCA representation to train a linear SVM.

Task 3.6. Train a linear SVM (use LinearSVC from scikit-learn) using

the PCA representation of the full training dataset for values of q between 10

and 200 in steps of 5. For each q compute and store the prediction accuracy

(use the score method) on the training and test dataset. Plot the scores for q.
Which q seems the best choice? Compare the situation to task 3.3 c) w.r.t. q.

The prediction results are not bad, but for self–driving cars probably

not acceptable.

3.4.1 Histogram of Oriented Gradients

To improve the prediction quality, we use a handcrafted featuremap as

an additional step before applying PCA. In particular, we will use the

so-called Histogram of Oriented Gradients (HOG), which became quite

popular after the well–received experiments by Dalal and Triggs [2]

were published. Before we explain what HOG is we take a quick ex-

course into computer vision.

Avery common tool in computer vision are imagegradients. Starting

from the difference quotient

lim
ε→0

f (x + ε)− f (x)
ε

we can define a gradient for images by using a discrete approxima-

tion. Let I ∈ Rh×w
be a matrix representing one color channel of an

image. The entries of the matrix represent pixel values for this color.

8 This is the problem fundamental to the field of computer vision.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=33&vcs=591a74de&obj=Script


34 principal component analysis

We can compute the partial derivatives in y- and x-direction by using

a centered difference quotient, for example

Iy+1,x − Iy−1,x

2
and

Iy,x+1 − Iy,x−1

2
. (3.6)

One might argue that the scaling factor of 2 is not canonical since the

two units color value and pixel distance have no natural choice for their

ratio’s unit. Indeed, it is common to pick the factor to normalize the

result into a suitable range. Furthermore, since for many algorithms

not the scale but the relative size of the derivatives is important, the

scaling factor can be considered to be flexible. A popular choice is 1,

which is what we will use.
9

Often, one can represent the derivative calculation by a convolution—

whose continuous counterpart might be known from integration the-

ory. Given a filter matrix K ∈ Rp×q
we define the convolution I ∗K of

K and I point-wise by

We use zero-based

indexing

(I ∗K)y,x := ∑
0≤i<p
0≤j<q

Ki,jIy+ky−i,x+kx−j

with shifts
10 kx and ky. The result is a new color channel whose entries

were computed usingweighted sums of the surroundings of each pixel

of I. Another example for a popular filter is Gaussian smoothing, here

the entries of K are computed using a Gaussian kernel.

The new color channel is either smaller, or one has to specify how

the missing pixel values outside of the border of I are extrapolated.

In our case we are extending I by the constant value 0. The y- and
x-derivatives can be computed using scipy.ndimage.convolve with

the filters [−1, 0, 1]> and [1, 0,−1], which correspond to eq. (3.6) with

scaling factor 1.

In HOG, the gradient norm and direction is computed for each pixel

and each color channel. For a RGB image this would give three sets of

gradient norms and directions. To reduce the sets of gradient norms

and directions to one set, we pick for every pixel a maximum over all

channels w.r.t. to the gradient norms. This means, for every pixel we

consider all color channels and pick a channel such that the gradient

norm of this channel at this pixel is maxmimal among all gradient

norms for this pixel.

Then, each (y, x)-position is assigned (binned) to a square cell of size

|c| ∈ N. The cells span over |c| pixels in both directions and form a

regular grid. Similarily, the orientations are binned into #b ∈N equally

sized intervals which partition either the full circle α := 2π or only the

half circle α := π, in which case one calls the orientations unsigned. The

intervals are[
(α/#b)i, (α/#b)(i + 1)

)
, for i = 0, . . . , #b− 1.

9 An argument for this factor is, that in the case of integer division the precision loss

from rounding down is avoided at the cost of a higher number range.

10 In SciPy these are chosen to center the filter by default.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=34&vcs=591a74de&obj=Script


3.4 pedestrian classification 35

In other words, the gradient norms are accumulated into a his-

togram
11 H(cy, cx, bi) where we collect

• the y- and x-positions into cells, indexed by (cy, cx), and

• the orientations into the former intervals for each cell, indexed

by bi.

Moreprecisley, for a gradient norm ‖∇y,x‖ anddirectionφ ∈ [−π, π]

at position (y, x) we consider the interval whose center is below or

equal to

φ̂ := φ mod α,

and the interval whose center is above φ̂ (wrapping around), as well as

preceding and succeding cells in y- and x-direction in the same fashion,

i.e., with respect to their center
12

(out of bound cells are ignored). The

gradient norms H(cy, cx, bi) for those neighbors are then updated by

addinga fractionof thegradient normatposition (y, x). The fraction for
each H(cy, cx, bi) is defined by the coefficients of a convex combination

whose terms can be found in algorithm 3.3.

The last step is to combine the cells into blocks, which are then nor-

malized and clipped. If |B| ∈N is the block size, then a block consists

of |B| consecutive cells in y-direction and |B| consecutive cells in x-
direction. The blocks do overlap, but only full blocks are considered.

Consequently, |B| has to be chosen less than or equal to the minimum

number of cells in y- and x-direction respectively. The HOG feature

vector consists of the entries of all blocks (in any order).

Task 3.7. (Optional bonus task) Test the HOG features for the dataset.

a) Implement algorithm 3.3 either yourself in Python, or build a Python

binding to the provided C++ implementation.

b) Repeat the experiment from task 3.6 for values of q between 10 and 200

in steps of 5 but use the HOG features as input for the PCA instead.

Be aware that task 3.7 is expected to be challenging. If you want to

implement algorithm 3.3 in Python you should try to avoid stating the

loops over all pixels as Python loops. Instead, a suitableNumPy routine

should be used. This means the algorithm as stated here should not

be implemented in a straightforward way with NumPy. A way to use

NumPymore efficiently is to compute all inner variables ( fx, cx,prec, . . .)
as matrices containing the results for all pixels. Then, each update of

the histogram can be done cell–wise, here scipy.ndimage.sum could

be handy. To test your implementation values for intermediate steps

of the algorithm are available (for a single layer), see the notebook for

details.

11 The histogram was introduced by Karl Pearson, the inventor of PCA [7].

12 The NumPy routines np.digitze and np.arange can be useful for these steps.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=35&vcs=591a74de&obj=Script


36 principal component analysis

Algorithm 3.3 Computation of HOG-features.

Input: An image I ∈ Rh×w×3
, a number of bins #b (default: 9), a

cell size |c| (default: 8), a block size |B| (default: 2), whether to use

unsigned directions (default: yes), and a clip value C (default: 0.2).

Output: A feature vector.

α←

π if use unsigned directions,

2π else.

|b| ← α/#b
Initialize H(cy, cx, bi) to zero for all cell indices cy, cx and all bin

indices bi.

for all pixel positions y, x do
dy(i), dx(i) ←derivatives at y, x using zero boundary conditions
on channel i, for i = 1, 2, 3.
imax ← argmaxi=1,2,3

√
(dy(i))2 + (dx(i))2

‖∇y,x‖ ←
√
(dy(imax))2 + (dx(imax))2

, dx ← dx(imax)
, dy ←

dy(imax)
.

φ̂← atan2(dy, dx) mod α

bprec ← index of orientation interval preceding the ori-

entation φ̂ w.r.t. the interval’s center (can be -1)

cx,prec ← index of horizontally preceding cell w.r.t. its cen-

ter (can be -1)

cy,prec ← index of vertically preceding cell w.r.t. its center

(can be -1)

fb ←
φ̂−[bprec|i|+ 1

2 |i|]
|i|

fx ←
x−[(cx,prec+1)|c|− 1

2 |c|−0.5]
|c|

fy ←
y−[(cy,prec+1)|c|− 1

2 |c|−0.5]
|c|

bsucc ← bprec + 1 mod #b, bprec ← bprec mod #b
cx,succ ← cx,prec + 1, cy,succ ← cy,prec + 1
(The cells with indices -1 and bh/|c|c or bw/|c|c can be stored in

H but must not be considered for the blocks)

H(cy,prec, cx,prec, bprec) ← add ‖∇y,x‖ (1− fx) (1− fy) (1− fb)

H(cy,prec, cx,prec, bsucc) ← add ‖∇y,x‖ (1− fx) (1− fy) fb

H(cy,succ, cx,prec, bprec) ← add ‖∇y,x‖ (1− fx) fy (1− fb)

H(cy,succ, cx,prec, bsucc) ← add ‖∇y,x‖ (1− fx) fy fb

H(cy,prec, cx,succ, bprec) ← add ‖∇y,x‖ fx (1− fy) (1− fb)

H(cy,prec, cx,succ, bsucc) ← add ‖∇y,x‖ fx (1− fy) fb

H(cy,succ, cx,succ, bprec) ← add ‖∇y,x‖ fx fy (1− fb)

H(cy,succ, cx,succ, bsucc) ← add ‖∇y,x‖ fx fy fb
end for
for all blocks do

Normalize the block w.r.t. the Euclidean (vector) norm.

Clip the block entries to be below C, normalize again.

Add the block entries to the feature vector.

end for

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=36&vcs=591a74de&obj=Script


3.5 outlook 37

Building a C++ binding is a quite technical task and therefore chal-

lenging as well. Some experience in programming Python and C, C++,

or Fortran could be very helpful. A skeleton of the binding with learn-

ing resources is provided in the README of the accompanying mate-

rial.

3.5 outlook

At the time, the HOG features managed to increase the prediction rate

notably. They are one of many examples where sophisticated hand-

crafted features were developed to solve a problem. A lot of work

can go into such feature maps and they might be problem specific.

In recent years, the deep learning community has provided powerful

tools to tackle computer image vision problems. One advantage is, that

(convolutional) neural networks can learn feature maps on their own,

but the training is not well understood and can be painful. Manually

created feature a still a valuable tool in the machine learning workflow.

For further details about pedestrian classification in particular we

refer to the reviews [1, 3].

Finally, more information on PCA can be found in the book by Jo-

liffe [5]. For dimensionality reduction in general see [6], which also

covers PCA.

references

[1] Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt

Schiele. “Tenyears ofpedestriandetection,whathavewe learned?”

In:EuropeanConference onComputerVision. Springer. 2014, pp. 613–

627.

[2] NavneetDalal andBill Triggs. “Histograms of oriented gradients

for human detection.” In:Computer Vision and Pattern Recognition,

2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1.

IEEE. 2005, pp. 886–893.

[3] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona.

“Pedestrian detection: An evaluation of the state of the art.” In:

IEEE transactions on pattern analysis and machine intelligence 34.4

(2012), pp. 743–761.

[4] Harold Hotelling. “Analysis of a complex of statistical variables

into principal components.” In: Journal of Educational Psychology

24.6 (1933), p. 417.

[5] Ian T Jolliffe. “Principal component analysis and factor analysis.”

In: Principal component analysis (2002), pp. 150–166.

[6] John A Lee and Michel Verleysen. Nonlinear dimensionality reduc-

tion. Springer Science & Business Media, 2007.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=37&vcs=591a74de&obj=Script


38 principal component analysis

[7] Karl Pearson. “On lines and planes of closest fit to a system of

points in space.” In: The London, Edinburgh, and Dublin Philosoph-

ical Magazine and Journal of Science 6.2 (1901), pp. 559–571.

[8] C.Wojek, S.Walk, and B. Schiele. “Multi-cue onboard pedestrian

detection.” In: 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition. 2009, pp. 794–801. doi: 10.1109/CVPR.2009.

5206638.

Send anonymous feedback for this page.

https://doi.org/10.1109/CVPR.2009.5206638
https://doi.org/10.1109/CVPR.2009.5206638
https://ins.uni-bonn.de/feedback/mllab?page=38&vcs=591a74de&obj=Script

	Contents
	I Introduction
	 Supervised Learning
	1 Linear Least Squares and k-nearest neighbors
	1.1 Data analysis basics
	1.2 Classification and Regression
	1.3 Linear least squares (LLS)
	1.3.1 Quantifying the misclassification error
	1.3.2 Our first ``real'' data set and Pandas
	1.3.3 Another approach to solving the optimization problem
	1.3.4 Data normalization

	1.4 k-nearest neighbors
	1.5 What we did not cover...

	2 Support Vector Machines
	2.1 Optimal separating hyperplanes
	2.2 Support Vector Machines
	2.2.1 Sequential minimal optimization

	2.3 Nonlinearity – Feature Maps and Kernels
	2.3.1 Nonlinear SVM
	2.3.2 k-fold crossvalidation

	2.4 Application to real world data
	2.4.1 Multi-class Learning
	2.4.2 The MNIST data set
	2.4.3 Scikit-Learn – A neat machine learning library in python

	2.5 What we did not cover...


	 Dimensionality Reduction
	3 Principal Component Analysis
	3.1 Reasons for reducing the dimension
	3.2 Derivation of PCA
	3.2.1 Numerical Computation

	3.3 Statistical Perspective
	3.4 Pedestrian Classification
	3.4.1 Histogram of Oriented Gradients

	3.5 Outlook

	4 Diffusion Maps
	4.1 Introduction
	4.2 Single-cell data analysis
	4.2.1 Preprocessing
	4.2.2 Comparison with other dimensionality reduction methods
	4.2.3 Parameter selection
	4.2.4 Cell group detection



	 Neural Networks
	5 Deep Neural Networks
	5.1 A single-layer feedforward network
	5.2 A two-layer feedforward network
	5.3 Deep neural networks
	5.3.1 Computing point evaluations of f – forward propagation
	5.3.2 Least-squares error minimization
	5.3.3 Computing the gradients of Ci – backward propagation
	5.3.4 Training the network – stochastic (minibatch) gradient descent

	5.4 Relation to other methods/models
	5.4.1 A relation to kernel methods
	5.4.2 A relation to ordinary differential equations (ODEs)

	5.5 Convolutional Neural Networks
	5.5.1 Keras
	5.5.2 Regularization

	5.6 Outlook

	6 Machine learning projects
	6.1 Suitable data sets
	6.1.1 CIFAR-10 image data set
	6.1.2 Rhine level data set
	6.1.3 Car crash data set
	6.1.4 20 newsgroups data set
	6.1.5 A different data set

	6.2 Final Presentation



