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In the last chapter we introduced PCA as a classic example of a

linear dimensionality reduction method. PCA is based on the restric-

tive assumption, that the data is lying in an affine linear subspace. In

contrast to that, nonlinear dimensionality reduction methods consider

generalmanifolds instead, see e.g. [3]. In this chapter, wewill deal with

diffusion maps, which is a nonlinear dimensionality reduction method,

introduced byCoifman and Lafon in 2004-2006, e.g. in [1]. In particular,

we will apply the new method to real biological data.

4.1 introduction

Let X = {x1, ..., xn} ⊂ Rd
be a given data set. Later on, in the biolog-

ical applications, n will be the number of cells and d the number of

measured genes. We assume that X is lying on a lower-dimensional

manifoldM. To reveal the geometry of the data set on this manifold,

we define a notion of affinity or similarity between points of X using a

symmetric and positive-semidefinite kernel function K : X ×X → R.

A common choice for K is the Gaussian kernel

K(x, y) = exp
(
−‖x− y‖2

2σ2

)
(4.1)

for x, y ∈ X with bandwidth σ > 0, which we have already seen on

sheet 2.

The main idea of diffusion maps is to construct a random walk

Markov chain on the data, where walking to a nearby data point is

more likely than walking to another one that is far away. First, we

perform a density normalization step by setting

q(x) = ∑
z∈X

K(x, z)

and computing the new kernel

K(α)(x, y) =
K(x, y)

q(x)αq(y)α

for some α ∈ [0, 1]. Choosing α = 1 provides an embedding which is

least affected by the data distribution.
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40 diffusion maps

From this, we construct a Markov chain as follows: Set

D(α)(x) = ∑
z∈X

K(α)(x, z)

and define the transition matrix

P(x, y) =
K(α)(x, y)
D(α)(x)

.

Now, we have

∑
z∈X

P(x, z) = 1 (4.2)

for all x. This means that the entry P(x, y) can be viewed as the one-

step transition probability from x to y. For a time parameter t ∈ N,

the power Pt
gives the t-step transition matrix, i.e. the entry Pt(x, y)

represents the transition probability from x to y after t time steps. Thus,

running the chain forward in time describes the diffusion process of

the data X at various scales.

TheMarkov chainnowallowsus todefine a time-dependentdistance

measure on X , the diffusion distance Dt by

D2
t (x, y) := ∑

z∈X
(Pt(x, z)− Pt(y, z))2 1

π(z)
,

where π denotes the stationary distribution of the Markov chain.

It is useful to rewrite the diffusion distance Dt by means of a spec-

tral analysis of the Markov chain. Under mild assumptions on K, the

transitionmatrix P has n real eigenvalues {λl} and (right) eigenvectors

{ψl} such that 1 = λ0 > λ1 ≥ λ2 ≥ ... ≥ λn−1 and

Pψl = λlψl .

The diffusion distance can then be expressed in terms of the eigen-

values and eigenvectors of P:

D2
t (x, y) =

n−1

∑
l=1

λ2t
l (ψl(x)− ψl(y))2.

Note that the term for l = 0 is omitted because the eigenvector ψ0 with

eigenvalue λ0 = 1 is constant.
1
Since the eigenvalues {λl} become

smaller and smaller (they tend to zero with bigger n), the diffusion

distance can be approximated by the first terms of the sum. For s < n,
we therefore introduce the family of diffusion maps {Ψt : X → Rs}t∈N

given by

Ψt(x) :=


λt

1ψ1(x)

λt
2ψ2(x)
.
.
.

λt
sψs(x)

 .

1 By eq. (4.2) and λ0 > λ1 follows that all entries of ψ0 must be identical.
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4.1 introduction 41

Each component λt
lψl is called diffusion coordinate. We now can connect

the diffusion distance with the diffusion map.

Theorem 4.1. The diffusion distance Dt is equal to the Euclidean distance in

the diffusion map space (up to a relative accuracy depending on s):

Dt(x, y) = ‖Ψt(x)−Ψt(y)‖

Thus, the diffusion map Ψt is an embedding of the data into the

Euclidean space Rs
. Note that the k-th entry of the l-th diffusion coor-

dinate, i.e. λt
lψl(xk), is the l-th coordinate of the k-th data point in the

embedding space.

The complete diffusion maps algorithm is given below. Note, that

for later tasks, one achieves better results, if we set the diagonal of K(α)

to zero. In fact, for recovering the structure of the data set, based on

relations between data points, it could be disturbing to have nonzero

entries on thediagonal of the transitionmatrix. In thisway, the relations

between data points are better weighted in the embedding.

Algorithm 4.4 Diffusion maps algorithm

Input: data X , α ∈ [0, 1], s < n
Output: embedded data Y
K ← [K(xi, xj)]

n
i,j=1 with kernel function K : X ×X → R

Q← diag(K1) with 1 = (1, . . . , 1)
K(α) ← Q−αKQ−α

K(α)
i,i ← 0 for all i = 1, . . . , n

D(α) ← diag(K(α)1)

P← (D(α))−1K(α)

Compute the first s + 1 eigenvalues {λl}s
l=0 and the corresponding

eigenvectors {ψl}s
l=0 of P

Y ← {λlψl}s
l=1

Figure 4.1: Schematic overview of the diffusion maps embedding for single-

cell data. (A) The n× G matrix representation of a single-cell data

set consisting of fourdifferent cell types. (B)Representationof each

cell in the G-dimensional gene space. (C) The n× n transition ma-

trix. (D) Data embedding on the first two non-trivial eigenvectors

of the transition matrix (the diffusion coordinates DC1 and DC2).

The embedding shows the flow of cells across the four cell types.
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42 diffusion maps

A schematic overview of the diffusion maps embedding, in particu-

lar for biological data, is given in fig. 4.1.

Task 4.1. Implement the diffusion maps algorithm. For this and the next

tasks, use the Jupyter notebook template, which is provided on our website.

To study the performance of diffusion maps, we start with a data set

from [4]. It contains 182 data points, which are subdivided into three

different groups. Each data point has a dimension of 8989. For the

following tasks, the biological meaning of this data set is not relevant.

Task 4.2. Embed the data set in a 3-dimensional space by using diffusion

maps. Use the kernel in (4.1) with parameters σ = 20 and α = 1 and plot

the result in a 3-dimensional scatter plot (s = 3), i.e. plot the second, third
and fourth eigenvector against each other. Do not forget to label your resulting

points in the plot according to the group assignments.

Task 4.3. Embed the data set in a 3-dimensional space by using principal

component analysis (PCA). You can use your own implementation from the

last chapter or from scikit-learn. Compare the PCA embedding with the

results achieved with diffusion maps in task 4.2.

4.2 single-cell data analysis

In recent years, dimensionality reduction methods have become pop-

ular to extract valuable information from high-dimensional biological

data. Biologists aim to discover how single cells (e.g. stem cells) differ-

entiate over time and which developmental stages they pass. For this,

cell data are collected from different developmental time points and

are then united into a single data set. For each cell, gene expression

analysis is done bymeasuring a certain number of genes. However, the

high amount of measured genes for each cell often makes it difficult

for biologists to detect cell differentiation progressions. Dimensional-

ity reduction methods can help to extract information by embedding

the data in a lower-dimensional space. If the embedding space is 2- or

3-dimensional, the data can be visualized. Afterwards, it is possible to

discover different cell groups in the data as clusters in the embedding

space.

In the following, we will apply diffusion maps to the “Guo” data [5].

The single-cell qPCR data set contains Ct values for 48 genes of 442

mouse embryonic stem cells at seven different developmental time

points, from zygote to blastocyst. Starting at the 1-cell stage, cells tran-

sition smoothly either towards the trophectoderm (TE) lineage or the

inner cell mass (ICM). Subsequently, cells transition from the inner cell

mass either towards the primitive endoderm (PE) or the epiblast (EPI)

lineage. In table 4.1, you can see how the Excel file for the Guo data

looks like. In the first row, you find the names of the measured genes.

The naming annotation in the first column refers to the embryonic
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4.2 single-cell data analysis 43

stage, embryo number and individual cell number, thus 64C 2.7 refers

to the 7th cell harvested from the second embryo collected from the

64-cell stage. However, we are only interested in the embryonic stage

of the cells, which is given by the first number (e.g. 64C).

For this, a qPCR (real-time quantitative polymerase chain reaction) is

conducted, which consists of several cycles. At each cycle, the amount

of fluorescence is measured. A Ct-value (abbreviation for threshold

cycle values) is then defined as the cycle number at which the fluores-

cence significantly exceeds the background-fluorescence, i.e. at which

a clear fluorescence signal is first detected. Thus, a higher Ct value

means a lower DNA or gene concentration.

4.2.1 Preprocessing

To ensure accurate and meaningful analysis, data sets often require

preprocessing techniques, such as data cleaning, normalization and

handling missing or uncertain values. In the following, we will learn

how to preprocess the Guo data. Denote the raw data set as

Xraw = {x1, . . . , xn} ⊂ RG,

where n is the number of cells and G the number of genes, i.e. xij is the

expression value of the j-th gene of the i-th cell. For the Guo data, we

know the following information:

• cells from the 1-cell stage embryos were treated differently in the

experimental procedure and

• entries bigger than the baseline 28 point out undetectable data.

Thus, cells from the 1-cell stage and cells with at least one entry bigger

than the baseline have to be excluded from analysis. The resulting

cleaned data is given by

X = Xraw \
(
X1C ∪

{
x ∈ Xraw | exists j ∈ {1, . . . , G} s.t. xj > 28

})
,

where X1C denotes the set of cells from the 1-cell stage.

Afterwards, we need to normalize the data, in order to obtain more

accurate results. A common strategy in biology is the normalization

via reference genes. In our case, we subtract for each cell the mean

Cell Actb Ahcy Aqp3 · · · Gapdh · · · Tspan8

1C 1 14.01 19.28 23.89 · · · 16.21 · · · 18.53

1C 2 13.68 18.56 28.00 · · · 15.69 · · · 18.29
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64C 7.14 13.78 25.46 20.79 · · · 17.43 · · · 18.47

Table 4.1: Table of the raw Guo data.
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expression of the endogenous control genes Actb and Gapdh apart

from the ones with baseline value 28:

xij ← xij −
1
2
(xig

Actb

+ xig
Gapdh

),

where xij 6= 28 and g
Actb

and g
Gapdh

are the indices of the genes Actb

and Gapdh, respectively. Subsequently, we need to set the entries with

baseline 28 to a new threshold. We define this threshold as the small-

est integer value greater than or equal to the maximum value of the

normalized data set, i.e. dmax
i,j
{xij | xij 6= 28}e.

Task 4.4. Preprocess the Guo data as described above. Round all entries to

three decimal places.

Now, we are able to apply the diffusion maps algorithm to the data

set.

Task4.5. Perform a diffusionmap analysis of the preprocessedGuo data for the

kernel in (4.1)with parameters σ = 10 and α = 1 and plot the embedding in a

2-dimensional scatter plot (s = 2), i.e. plot the second eigenvector against the
third eigenvector. Interpret your result. Can you assign the branches revealed

in the plot to the described lineages of the Guo data?

Task 4.6. Perform a diffusion map analysis of the Guo data with the same

parameters as in task 4.5, but without preprocessing (remove only cells with

undetectable data) and compare your result with the plot from task 4.5.

4.2.2 Comparison with other dimensionality reduction methods

We have seen, that preprocessing is an important step in data analysis

and from now on, we use the preprocessed Guo data. In the following,

we want to compare the diffusion maps performance of the Guo data

to other dimensionality reduction methods.

Task 4.7. Embed the preprocessed Guo data by using principal component

analysis (PCA) and another dimensionality reductionmethod (e.g. tSNE). You

can use scikit-learn. Compare the resultswith the diffusionmaps embedding

from task task 4.5. Compare the computation times of the dimensionality

reduction methods, as well.

4.2.3 Parameter selection

Up to now, we have used the bandwidth σ = 10 for doing the dif-

fusion maps analysis which has given a reasonable result. However,

parameter selection is a difficult task in machine learning algorithms.

Task 4.8. Compare the diffusion maps embedding of the Guo data for several

bandwidths σ. Describe the different behaviours.

Send anonymous feedback for this page.

https://ins.uni-bonn.de/feedback/mllab?page=44&vcs=67da86c4&obj=Script


references 45

We propose a rule for σ, suggested by Lafon [2]:

σ =

√
1

2n

n

∑
i=1

min
j 6=i
{‖xi − xj‖2}. (4.3)

The radicand indicates the half of the average of all nearest neighbor

distances in the data set.

Task4.9. Implement the rule (4.3) for the bandwidth σ and plot the embedding

for the Guo data set with the bandwidth chosen by this rule.

4.2.4 Cell group detection

So far, we determined the cell groups and lineages by looking at the

picture. We aim to identify the cell lineages by a learning method.

Since diffusion maps is a spectral embedding method, we can use it to

perform spectral clustering on the transition matrix P:

1. For some not too large M, compute the M largest eigenvalues

{λl}M
l=0 of P.

2. Identify Λ such that λΛ−1 − λΛ is large (spectral gap).

3. Compute the corresponding Λ eigenvectors {ψi}Λ−1
i=0 of P

4. Extract Λ clusters from {ψi}Λ−1
i=1 (e.g. with k-means).

Task 4.10. Implement the spectral clustering algorithm, using k-means for

clustering (from scikit-learn) for a given number of clusters Λ in step 4.

Task 4.11. Plot the first 20 eigenvalues of the transition matrix P for the

preprocessed Guo data and identify Λ by determining the biggest gap (use the

parameters from task 4.5).

Task 4.12. Perform the spectral clustering algorithm for the Guo data with

Λ from task 4.11 and plot the resulting points/clusters in 2D. Explain and

interpret your result.
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