
Programmiermethoden des
Wissenschaftlichen Rechnens

Winter semester 2018/2019
Prof. Dr. Marc Alexander Schweitzer

Clelia Albrecht and Albert Ziegenhagel

Exercise sheet 3.

Exercise 24. (Linear algebra in C++)

a) Consider the linear algebra types (CsrMatrix, Vector) and operations from the last
exercise. Transfer all the functionality into modern C++ code.

b) Explain the differences between your C and C++ implementation. In particular elabo-
rate on:

• Your method of construction, use of members, types, operators and memory
management.

• Do you need an explicit destructor? Why?

• How do you access data members of your classes? What are the benefits and
potential drawbacks of your implementation?

• How robust is your implementation against potential future changes (e.g. a dif-
ferent storage format)?

c) Write a CMake for your project that includes:

• Compiling the linear algebra types and operations into a library.

• Build a number of executables where each represents a reasonable test for the
functionality provided in the library.

Exercise 25. (Iterative solvers for sparse matrices)

We want to write a small solver library that uses the linear algebra library from exercise
24. To this end:

a) Implement the Richardson and Conjugate-Gradient (CG) method, both utilizing eit-
her a Gauss-Seidel or Jacobi preconditioner (https://web.stanford.edu/class/
cme324/saad.pdf).

b) Think of an interface to solve an equation system with arbitrary combination of
solver and preconditioner from above. Can you implement this without any code
duplication? How many changes would be necessary if your functions need to be
extended to support another type of solver and/or preconditioner?

c) Extend your CMake file to generate another library for the solvers that uses the linear
algebra library.

d) Write additional tests for the solvers.

Exercise 26. (B-Spline curves)

Read the introduction to B-Splines at e.g. http://ftp.cs.wisc.edu/Approx/

bsplbasic.pdf. The notation used in the following is that a B-Spline curve C(u)
of degree p is represented by a node vector U = {u0, . . . , um} and two dimensional
control points {Pi}, i = 0, . . . , n.

1

https://web.stanford.edu/class/cme324/saad.pdf
https://web.stanford.edu/class/cme324/saad.pdf
http://ftp.cs.wisc.edu/Approx/bsplbasic.pdf
http://ftp.cs.wisc.edu/Approx/bsplbasic.pdf

a) Write a 2-dimensional B-Spline class that needs to support:

• Construction of a B-Spline curve of degree p from a given knot vector U and
control points Pi.

• Evaluation of the curve at a parameter u.

• Evaluation of the curve at n uniformly distributed points and write the results
into a simple text file (one pair of x, y values per line).

b) Explain the design of your class with respect to at least the following points:

• How do you manage memory within your spline class?

• What operators may be overloaded for the class? How does that influence the
interface of the class? What implications does that have on future changes of
the interface, the implementation or the addition of additional features to your
class?

• How strong does your implementation depend on the restriction to two space
dimensions?

• How do you handle the 2-dimensional control points? What are the benefits
of your representation? What other ways would be possible to represent those
points? What are the benefits/drawbacks compared to your choice?

c) Write a small Python script that reads the x, y data from the file and plots the linear
approximation to the curve via matplotlib.

d) Test your B-Spline class with at least the following data: p = 2, U =
{0.0, 0.0, 0.0, 0.3, 0.5, 1.0, 1.0, 1.0}, {Pi} = {(0, 1), (1,−0.2), (3, 2), (6, 1.3), (7, 1.5)}.

Exercise 27. (B-Spline interpolation)

Given a number of points {Qk}, k = 0, . . . , n. We now want to write an algorithm to
create a B-Spline curve C(u) that interpolates those points at specific locations C(ūk) =
Qk . To this end:

a) Create your interpolation parameters as ū0 = 0, ūn = 1, ūk = ūk−1 +
|Qk−Qk−1|

d with
d =

∑n
k=1 |Qk −Qk−1|.

b) Choose your knot vector U = {u0, . . . , um} as u0 = · · · = up = 0, um−p = · · · = um =

1, uj+p = 1
p

∑j+p−1
i=j ūi, j = 1, . . . , n− p.

c) Set-up a system of linear equations to solve C(ūk) =
∑n

i=0Ni,p(ūk)Pi,r = Qk,r where
Ni,p are the B-Spline basis functions, Pi are the unknown control points and r is the
index of the space component. Please note that the matrix representing the equation
system has at most p + 1 non-zero entries per row.

d) Solve the systems of linear equations with one of the solvers from the previous exercise
and create a B-Spline curve from the resulting knot vector and control points.

e) Use the interpolation points from the file b_spline_interpolation.txt (to be dow-
nloaded from the course website) to test your implementation. Use p = 3.

f) Plot the curve using matplotlib via the approach from the previous exercise.

2

