

Scientific Computing I

Wintersemester 2018/2019 Prof. Dr. Carsten Burstedde Jose A. Fonseca

Due date: Tue, 8.1.2019.

Exercise Sheet 10.

Exercise 1.

Let \mathcal{T}_h a uniform triangulation of Ω and suppose that S_h belongs to an affine family of finite elements. Further, suppose the nodes of a nodal basis of S_h are z_1, \ldots, z_N with $N = N_h = \dim S_h$. Verify that for some constant c independent of h, the following inequality holds:

$$c^{-1} \|v\|_{0,\Omega}^2 \le h^2 \sum_{i=1}^N |v(z_i)|^2 \le c \|v\|_{0,\Omega}^2 \quad \text{for all } v \in S_h.$$
(1)

Exercise 2.

Prove the Bramble-Hilbert lemma for t = 1 by choosing the interpolator Iv to be the constant function

$$Iv := \frac{\int_{\Omega} v \, \mathrm{d}x}{\int_{\Omega} \, \mathrm{d}x}.$$
(2)

Exercise 3.

Let Ω be a polygonal two-dimensional domain. Consider a family of triangle-based quasiuniform triangulations $\{\mathcal{T}_h\}_h$ of Ω and denote the space of linear finite elements by V_h . Show that

$$\|v_h\|_{\infty} \le Ch^{-1} \|v_h\|_0 \quad \text{for all } v_h \in V_h \tag{3}$$

for a constant C independent of h.

Exercise 4.

(6 Points)

With the same definitions as in Exercise 2, show that the discrete solution u_h of the Poisson equation with homogeneous boundary conditions satisfies

$$||u - u_h||_{\infty} \le Ch||u||_2.$$
 (4)

Hint: Use (3).

(6 Points)

(6 Points)

(6 Points)