

Scientific Computing I

Wintersemester 2018/2019 Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 11.

Due date: Tue, 15.1.2019.

(3+3 Points)

The points you may obtain from this problem sheet are bonus points

Exercise 1. (Preconditioning)

A matrix $A \in \mathbb{R}^{n \times n}$ is called row equilibrated if $\sum_{k=1}^{n} |a_{jk}| = 1$ for all $j = 1, \ldots, n$. Prove the following properties.

- a) Let $A \in \mathbb{R}^{n \times n}$ be a row equilibrated and regular matrix. Then, $\operatorname{cond}_{\infty}(A) \leq \operatorname{cond}_{\infty}(DA)$, for each regular and diagonal matrix $D \in \mathbb{R}^{n \times n}$.
- b) Let $A \in \mathbb{R}^{n \times n}$ be a regular matrix. Define $T := \text{diag}\{\alpha_1^{-1}, \ldots, \alpha_n^{-1}\}$ where $\alpha_j = \sum_{k=1}^n |a_{jk}|$. Then $\text{cond}_{\infty}(TA) \leq \text{cond}_{\infty}(A)$.

Exercise 2. (Condition number)

Show that the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
(1)

is positive definite and that its condition number is 4. *Hint: Consider the quadratic form associated with A.*

Exercise 3.

(6 Points)

(6 Points)

Let V denote a Hilbert space with inner product $a(\cdot, \cdot)$ and U a closed subspace of V. For $g \in V$ define $U_g = \{v + g \mid v \in U\}$. Prove that the following statements are equivalent,

- a) $u \in U_g$ satisfies a(u, v) = 0 for all $v \in U_0$,
- b) u minimizes a(v, v) over $v \in U_g$.

Figure 1: Geometry for the programming task.

Programming Exercise 1. (Optional)

(1+9 Points)

We want to solve the Poisson problem

$$-\Delta u = 1 \quad \text{in } \Omega, u = 0 \quad \text{on } \partial\Omega$$
(2)

using the finite element method. Ω is the geometry depicted in Figure ??. The corresponding .poly file describing it can be obtained at https://www.cs.cmu.edu/~quake/guitar.poly.

Definition 1. Given a matrix $M \in \mathbb{R}^{n \times n}$, its lumped approximation is given as diag $\{M(1, \ldots, 1)^{\top}\}$.

- a) Use triangle to produce a triangulation of Ω and the corresponding .ele and .node files.
- b) Modify the CG method from the previous problem sheets such that it allows the usage of a preconditioner. Approximate the solution of the system of equations arising after discretization of (??) with P_1 linear elements for the above described Ω . Use the lumped mass matrix approximation as preconditioner and compare with the non-preconditioned version.

Hint: With the PETSc CG implementation the preconditioner P can be easily realized by coding the action of it to a given vector $(v \rightarrow Pv)$ and passing it as argument to the function PCSetType(PC pc, PCType). See for example

https://www.mcs.anl.gov/petsc/petsc-3.10/docs/manualpages/PC/PCSHELL. html#PCSHELL.

The programming task can be solved in groups of at most two students. Please present your solutions during the week of January 21–25, 2019 in either Mathematics CIP-Pool. Please make sure to pick a slot ahead of time by signing into the corresponding CIP-Pool list for this lecture.