

1

Scientific Computing I

Wintersemester 2018/2019 Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 5.

Exercise 1.

Let Ω_h be a two dimensional grid with the same mesh spacing h > 0 in both x and y coordinate directions. Consider the following finite difference stencil on Ω_h ,

$h^{-2} \begin{bmatrix} -1/4 & 0 & 1/4 \\ 0 & 0 & 0 \\ 1/4 & 0 & -1/4 \end{bmatrix}.$ (1)

Indicate which differential operator this stencil discretizes and determine the corresponding order of consistency.

Exercise 2.

- Let $\Omega = (-1, 1)$ and f(x) := |x|.
- a) Compute the weak derivative of f on Ω .
- b) Show that f does not have a second weak derivative on Ω .

Exercise 3.

Show the following statements.

- a) If u has a weak derivative $D^{\alpha}u$ in Ω , then u is also weakly differentiable in each region $\Omega_0 \subset \Omega$, yielding the same derivative.
- b) If $D^{\alpha}u$ has a weak derivative $D^{\beta}(D^{\alpha}u)$, then the derivative $D^{\alpha+\beta}u$ also exists and $D^{\alpha+\beta}u = D^{\beta}(D^{\alpha}u).$

Definition 1. Let $m \in \mathbb{N}, m \geq 0$ and $1 \leq p \leq \infty$ and Ω a domain in \mathbb{R}^d . The Sobolev space $H^{m,p}(\Omega)$ is defined as the set of all functions $u \in L^p(\Omega)$ such that for every multiindex α with $|\alpha| \leq m$, $D^{\alpha}u$ exists and belongs to $L^p(\Omega)$. The spaces $H^{m,p}(\Omega)$ are endowed with the norms

$$||u||_{m,p;\Omega} = ||u||_{m,p} := \left(\sum_{|\alpha| \le m} ||D^{\alpha}u||_p^p\right)^{1/p}, \quad 1 \le p < \infty,$$
(2)

$$||u||_{m,\infty;\Omega} = ||u||_{m,\infty} := \max_{|\alpha| \le m} ||D^{\alpha}u||_{\infty}, \quad p = \infty.$$
(3)

Exercise 4.

Let Ω a bounded domain in \mathbb{R}^d . Prove that $H^{m,p}(\Omega)$ is a Banach space (a complete vector space with a norm) for each $m \in \mathbb{N}, m \ge 0$ and $1 \le p \le \infty$. *Hint:* $L^q(\Omega) \subseteq L^p(\Omega)$ for $1 \le p \le q \le \infty$ and a bounded Ω .

Due date: Tue, 20.11.2018.

UNIVERSITÄT BONN

(6 Points)

(6 Points)

(6 Points)

(6 Points)