Scientific Computing I

Wintersemester 2018/2019 Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 6.

Exercise 1.

Let Ω a domain in \mathbb{R}^2 with Lipschitz boundary $\Gamma := \partial \Omega$ and $\vec{\eta}$ denote the outward pointing normal to Γ .

a) Consider the Poisson equation

$$-\Delta u = 0 \quad \text{in } \Omega, \tag{1}$$

$$u = 0 \quad \text{on } \Gamma. \tag{2}$$

Show that every classical solution $u \in \mathcal{C}^2(\Omega)$ satisfies the weak formulation

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = 0 \quad \text{for all } v \in \mathcal{C}_0^1(\Omega).$$
(3)

b) Derive the weak formulation in $H^1(\Omega)$ for the equation

$$-\Delta u + c(x)u = f \quad \text{in } \Omega, \tag{4}$$

$$\nabla u \cdot \vec{\eta} = g \quad \text{on } \Gamma. \tag{5}$$

That is, determine a bilinear form $a(\cdot, \cdot)$ and a linear functional $F(\cdot)$ for the following formulation: Find $u \in H^1(\Omega)$ such that

$$a(u,v) = F(v)$$
 for all $v \in H^1(\Omega)$. (6)

Exercise 2.

Consider the bilinear form $a: H^1(0,1) \times H^1(0,1) \to \mathbb{R}$ defined by

$$a(u,v) := \int_0^1 x^2 u' v' \, \mathrm{d}x.$$
(7)

a) Show that the problem of finding a minimum of

$$\frac{1}{2}a(u,u) - \int_0^1 u \,\mathrm{d}x$$
 (8)

does not have a solution in $H_0^1(0, 1)$.

- b) Show that $a(\cdot, \cdot)$ is not elliptic.
- c) Write down the associated classical differential equation.

Exercise 3.

Let Ω be a bounded domain. With the help of Friedrichs' inequality, show that the constant function u = 1 is not contained in $H_0^1(\Omega)$, and hence $H_0^1(\Omega)$ is a proper subspace of $H^1(\Omega)$.

Exercise 4.

Let $\Omega \subset \mathbb{R}^d$ be a ball with center at the origin. Show that $u(x) = ||x||^s$ possesses a weak derivative in $L^2(\Omega)$ if 2s > 2 - d or if s = 0.

Due date: Tue, 27.11.2018.

(2+4 Points)

UNIVERSITÄT BONN

(6 Points)

(6 Points)

(3+2+1 Points)