

## Scientific Computing I

Wintersemester 2018/2019 Prof. Dr. Carsten Burstedde Jose A. Fonseca



(2+4 Points)

## Exercise Sheet 8.

Due date: **Tue**, **11.12.2018**.

Exercise 1. (Tensor Lagrange elements)

Let  $k \in \mathbb{N}$  and  $\mathcal{P}_k$  denote the set of polynomials of degree less or equal than k in one variable. We further define

$$\mathcal{Q}_k := \left\{ \sum_j c_j p_j(x) q_j(y) \mid p_j, q_j \in \mathcal{P}_k \right\}$$
(1)

- a) Show that dim  $\mathcal{Q}_k = (\dim \mathcal{P}_k)^2$  and that  $\{x^i y^j \mid 0 \leq i, j \leq k\}$  is a basis for  $\mathcal{Q}_k$ .
- b) Let T be the unit square,  $\Pi = Q_k$  and  $\Sigma$  denote point evaluations at the points  $\{(t_i, t_j) \mid i, j = 0, 1, ..., k\}$  where  $\{0 = t_0 < t_1 ... < t_k = 1\}$ . Prove that  $(T, \Pi, \Sigma)$  is a finite element.

Exercise 2. (Isoparametric elements)

(2+1+3 Points)

Consider the following basis functions defined over the square  $[-1, 1]^2$ ,

$$\chi_1(\xi,\eta) = (\xi - 1)(\eta - 1)/4,$$
 (2a)

$$\chi_2(\xi,\eta) = -(\xi+1)(\eta-1)/4,$$
(2b)
(2c)

$$\chi_3(\xi,\eta) = (\xi+1)(\eta+1)/4,$$
 (2c)

$$\chi_4(\xi,\eta) = -(\xi-1)(\eta+1)/4.$$
 (2d)

These basis functions may be mapped to a quadrilateral with vertices  $(x_{\nu}, y_{\nu})$ , for  $\nu = 1, 2, 3, 4$ , by the change of variables

$$x(\xi,\eta) = \sum_{\nu=1}^{4} x_{\nu} \chi_{\nu}(\xi,\eta), \quad y(\xi,\eta) = \sum_{\nu=1}^{4} y_{\nu} \chi_{\nu}(\xi,\eta).$$
(3)

Compute the Jacobian matrix J of the transformation (3) and verify the following statements

- a) J is a constant matrix if the mapped element is a parallelogram with vertices  $(x_0, y_0), (x_0 + h_x, y_1), (x_1 + h_x, y_1 + h_y)$  and  $(x_1, y_0 + h_y)$ .
- b) J is a diagonal matrix if the mapped element is a rectangle aligned with the coordinate axes.
- c) The determinant of J is a linear function of the coordinates  $(\xi, \eta)$ .

**Definition 1.** Let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^d$ . The space  $H(\operatorname{div}, \Omega)$  is defined as the completion of the space of vector valued functions  $(\mathcal{C}^{\infty}(\Omega))^d$  with respect to the norm

$$\|\vec{v}\|^{2} := \|\vec{v}\|_{0,\Omega}^{2} + \|\operatorname{div}\vec{v}\|_{0,\Omega}^{2}.$$
(4)



Figure 1: Illustration for exercise 4

## Exercise 3.

(6 Points)

(6 Points)

Prove that a piecewise polynomial  $\vec{v}$  is an element of  $H(\text{div}, \Omega)$  if and only if the components  $\vec{v} \cdot \vec{\eta}$  in the direction of the normals are continuous on inter-element boudaries. Hint: Theorem 2.32 from the lecture and an appropriate Green formula.

## Exercise 4.

- a) For the pair of elements illustrated in Figure 1, show that the respective bilinear function that takes the value 1 at the vertex  $\mathbf{p}$  and zero at the other vertices gives different values at the midpoint  $\mathbf{m}$  on the common edge.
- b) Show that the isoparametrically mapped bilinear function defined via (2) and (3) is continuous along the common edge.