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Exercise sheet 1.

The assignment corresponding to this exercise sheet can be found at https://

classroom.github.com/a/fvUmEpUl. Accept the assignment and download the starter
code repository.

Exercise 1. (Taylor series)

The most common way to define the exponential function exp : R→ R is via the power
series:

exp(x) =

∞∑
n=0

xn

n!
.

Similarly, we have the following identity for the sine function:

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Please implement the following functions in the file taylor.py, where you can find the
corresponding function heads.

a) Use the first identity to write a Python function exp_approx(epsilon, x) for the
approximative computation of exp(x) to an error epsilon. Formulate the loop condi-
tion without referencing the true value. Find a way to avoid division by very large
integers (and still be accurate enough).

b) Plot your function on the interval [−1, 4] using matplotlib. Furthermore consider the
exp() function in the math package (import math) and plot the error between your
function and the one from the math package for different values of epsilon.

c) Do the same for sin(x) on suitable intervals using the second identity above.

Exercise 2. (A rudimentary matrix class)

In the file matrix.py you can find a class for the representation of matrix computations.
The member functions of that class are not yet implemented. Only comments are pre-
sent that describe what each of the functions is supposed to do. Implement all missing
functionality of the matrix class. This includes:

a) The initialization function that creates a new matrix from a given set of values via
A = Matrix([[1, 2], [3, 4]]).

b) Functions to get the row and column dimensions of the matrix via A.rows() and
A.cols().

c) Functions to access and modify specific values of the matrix via A[i,j].
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d) Generating a string representation of a given matrix via str(A) or to print it directly
via print(A). The representation should be in the usual form as a vertical sequence
of rows, e.g.

1 . 2 .
3 . 4 .

e) A test for equality using the infix-operator via A == B.

f) A matrix-matrix product via A * B.

g) Implement the function lu_decomposition(A) that computes the LU-decomposition
with partial pivoting PA = LU of suitable regular matrices. Here L and U are lower
and upper triangular matrices and P is a permutation matrix to reorder A. Use
the matrix class from the first exercises to represent the input A and the resulting
matrices L, U and P . Test the program for the inputs

A =

3 2 1
6 6 3
9 10 6

 , B =

(
0 1
1 0

)
.

h) Implement the function inverse(A) to compute the inverse A−1 of an invertable
square matrix A. You can use the LU-decomposition from the last exercise within
your implementation. Test the implementation with at least the following matrix

A =

 3 −1 2
−3 4 −1
−6 5 −2

 .

i) Write a short text to answer the following questions:

• Why did you implement your matrix class the way you did?

• What makes your implementation efficent or maybe inefficient? What could you
do to change that?

• Why is overloading operators a good idea for such a matrix class? What are the
benefits?

Exercise 3. (Gauß-Seidel)

The Gauß-Seidel method is an iterative method to solve a linear system of equations
Ax = b. The matrix A is decomposed into a diagonal matrix D, a strictly lower triangular
component L and a strictly upper triangular component U, such that A = L + D + U .
Starting with an initial value x(0), the following sequence is then computed iteratively:

x(k+1) = (D + L)−1(b− Ux(k)).

We stop iterating when the norm of the update |x(k+1)−xk|∞ is less than some tolerance
ε or we reach an iteration limit kmax.

a) Implement the Gauss-Seidel iteration in a function gauss_seidel(A,b,x_0). Use
your own matrix class from the first exercise to represent A and a simple Python list
to represent the vectors b and x(k). The return value of the function is supposed to
be the final result vector after reaching one of the termination criteria. Use ε = 1e−5
and kmax = 1000 for your tests.

b) Consider at least the linear equation system for your tests:4 3 0
3 4 −1
0 −1 4

 ·
x1x2
x3

 =

 24
30
−24


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c) Implement the same Gauss-Seidel iteration using matrices and vectors from the
Python package NumPy.

d) Compare the implementation of your own matrix class with the the one using NumPy

and write a short text about this comparison. Within the file data.py in the reposi-
tory you can find matrices and right-hand-side vectors for equation systems with 3,
5, 10 and 20 unknowns. Solve these systems of equations and try to get an impression
of how the runtime of the two implementations compare to each other. What is the
main takeaway?

Cellular automata

Finite cellular automata are a useful tool to model spatially discrete dynamic systems.
They are characterized by the following properties:

1. A finite cellular automaton consists of a finite number of (commonly) one- or two-
dimensional cells. All of these cells are of the same shape and size.

2. Every cell of an automaton is assigned just one of a finite number of states.

3. The state of a cell in time step tn+1 only depends on the state of itself and its
neighbors in time step tn. This dependence is determined by a local transition
function.

Choose at least one of the following exercises. In these exercises, the choice
of objects, functions and interfaces is up to you, therefore there are no tests
your solution has to pass.

Exercise 4. (Conway’s Game of Life)

The Game of Life takes place on a quadrilateral, two-dimensional grid. Every cell of this
grid can be either dead or alive. The neighborhood of a cell is given by the eight adjacent
cells. To determine the state of a cell in the next time step, the following rules apply:

1. A living cell with less than two and more than three living neighbors dies. A living
cell with two or three living neighbors lives on.

2. A dead cell with exactly three living neighbors rises from the dead and is alive
again.

a) Assure yourself (in writing) that the Game of Life does indeed fulfill all the require-
ments of a cellular automaton.

b) Implement a Python simulation of the Game of Life. One way to represent the grid
could be to use a matrix whose entries correspond to the state of the cells. Choose a
random initial condition and try to avoid unnecessary case distinctions for boundary
cells.

c) To check that your implementation is correct you need some kind of animation. The
easiest way to achieve that would be to print a matrix that represents the grid and
then clear the terminal again for every time step.

Exercise 5. (A simple traffic simulation)

We want to use cellular automata for a simple traffic simulation. We consider a simple
one-way, one-lane road with periodic boundary conditions, i.e. a circle. Each cell of our
automaton represents a fixed length of the road, which is either occupied by a car driving
with a certain speed or not occupied at all. The set of states is therefore “no car” or “car
with speed x”. To simplify things we only consider discrete speed values and measure
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speed in cells per time step. Furthermore, our model should be collision-free and no cars
should vanish or appear out of thin air. We set a speed limit at speed limit cells per
time step and assume that each car wants to drive this fast if it is able to, i.e. if it would
not collide with another car.

a) Assure yourself again, that this simple traffic model does fulfill all requirements of a
cellular automaton. What is a sensible definition of a neighborhood in this case?

b) Think of a local transition function that does meet all our requirements as stated
above and write an algorithm for the traffic simulation in pseudo code.

c) Write a Python implementation of your traffic simulation algorithm, which should
be able to handle variable road lengths and speed limits. Choose a random initial
configuration.

d) Animate your traffic simulation. The easiest way might be to use an array to represent
the street, print it out and then clear the terminal for every time step.
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