
Programming Methods in
Scientific Computing

Winter semester 2019/2020
Prof. Dr. Marc Alexander Schweitzer

Clelia Albrecht and Albert Ziegenhagel

Exercise sheet 2.

The assignment corresponding to this exercise sheet can be found at https://

classroom.github.com/a/kVa4vMrM. Accept the assignment and download the starter
code repository.

Linear Algebra in C

In the following we will build a small linear algebra library in C that can deal with
sparse matrices and vectors and includes a simple iterative Gauss-Seidel solver for linear
systems of equations. The template repository contains tests for all the functionality that
is to be implemented throughout this exercise sheet. Additionally it provides a CMake
build system to build the code and run all the tests.

Make sure you follow the interface proposed by the following exercises precisely to make
sure the provided tests can pick your implementation up and run successfully.

Exercise 1. (Setup your Buildsystem)

We first need to make sure all tools to build the project are available on your machines.
We need CMake to generate the make files and we will use Ninja as a build tool.

a) Install CMake and Ninja on your computer:

• Linux: Open a terminal and run

sudo apt -get update

sudo apt -get install cmake ninja -build

for Ubuntu. For other Linux distributions, choose your corresponding package
manager.

• Windows: Open an elevated (Administrator) PowerShell and run

choco install cmake ninja -y

to install CMake and Ninja.

• macOS: Open a terminal and run

brew install cmake ninja

to install CMake and Ninja.

b) Test whether you can run the build and test process for this repository. To do so first
clone the git repository for this exercise sheet. Open a terminal (make sure you use the
Developer PowerShell for VS2019 on Windows) and navigate into the repositories
root directory. First create a build directory and enter it via:

mkdir build

cd build

1

https://classroom.github.com/a/kVa4vMrM
https://classroom.github.com/a/kVa4vMrM

All build artifacts will be created within this directory.

Now we run CMake to generate the build files for Ninja:

cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Debug

The two dots .. right after cmake mean that cmake should look for the root
CMakeLists.txt file in the parent directory, which is the root directory of
the repository. -G Ninja tells CMake to generate Makefiles for Ninja and with
-DCMAKE_BUILD_TYPE=Debug we instruct it to generate compiler commands that will
disable optimizations and enable debug symbols. This is always the recommended
setting while developing code. For performance benchmarks you want to change this
to -DCMAKE_BUILD_TYPE=Release which will enable the most common optimizations
to gain a better performance of your program. The call to CMake does not need to
be repeated every time you want to build your code.

Use:

ninja -v -k0

to build the project. -v puts Ninja into a verbose mode that will display all the calls
to the compilers and linker to build the project. -k0 makes Ninja keep going after
errors. Without that option ninja would stop compiling the files as soon as the first
file fails to compile. At the current state the build process is expected to fail, since
the functionality of this exercise has not yet been implemented by you.

To execute all tests you can use:

ctest --verbose

Here the option --verbose makes sure CTest will print the commands it calls to
execute the tests as well as the output of the tests. You can use --output-on-failure
to make CTest print the output of tests only when they failed and to not print any
output to the terminal for tests that completed successfully. Since the previous build
step could not be completed successfully, we expect all tests to fail with an error
message that the test executables could not be found. Make sure that all tests pass
when you have finished working on this exercise sheet.

Exercise 2. (A simple vector type)

We start by creating a simple type for numerical vectors. To make sure the code will be
easy to adjust to different scalar types later we will assume the following type definition
to be available in a header of your code:

typedef double PmscScalar;

After you have finished this exercise all tests starting with TestVector should execute
successfully. To build only these tests you can call Ninja with the following arguments:

ninja test_vector

If you want to execute only the vector tests and skip the tests for the following exercises
you can use

ctest --verbose --tests -regex TestVector

a) Create a C type Vector that represents a contiguous dense vector of (double precision)
floating point values. An object of the vector class should be created by

int vec_create(int size, Vector* vector);

2

where size is the length of the resulting vector and vector is the input parameter
of the vector to be created. The function should return 0 if the creation has been
successful and a non-zero value (e.g. −1) on failure. The function

void vec_free(Vector* vector);

is then used to free all storage that has been allocated during the call of vec_create.

b) Create getters and setters to retrieve and modify the vectors data. The following
signatures should be used for the functions:

• A function that returns the total size of the vector:

int vec_get_size(Vector vector);

• A function that returns the value of the entry vi:

PmscScalar vec_get_entry(Vector vector, int index);

• A function that allows to modify the value of the entry vi:

void vec_set_entry(Vector vector, int index, PmscScalar Value);

c) Create a function vec_assemble to assign multiple values to an already created
vector. The signature of that function should look as follows:

void vec_assemble(Vector vector, const PmscScalar* values, int size);

where vector is the vector where to assign the values to, values is the array of
numbers to assign and size is the size of the values array (which needs to be the
same size as vector).

d) Create a function vec_dot that computes the dot-product of two vectors. The signa-
ture of that function should look as follows:

PmscScalar vec_dot(Vector v1, Vector v2);

where v1 and v2 are the arguments to the dot product and the result of the compu-
tation is returned by the function.

Exercise 3. (A sparse matrix type)

Consider a sparse matrix like the following

A =



−7 4 0 2 0 0
1 −5 0 4 0 0
0 2 −11 3 6 0
0 0 0 −2 0 2
0 1 2 3 −9 3
0 0 7 0 0 −9

 (1)

A naive approach to store this matrix in a computer would be as a dense matrix where
all entries are stored. A smarter way would be to store the matrix in a sparse fashion.
Usually this means we store non-zero entries only. One of the most popular formats to

3

store sparse matrices in numerical codes is the compressed sparse row (CSR) format.
For a sparse n×m matrix with k non-zero entries, the CSR format stores three arrays
A, JA and IA. The array A of length k contains all non-zero entries in row-wise order.
The array JA of length k stores the column indices for each of the non-zero entries. The
array IA of length n + 1 stores the indices of the elements of A of JA where a new row
starts. For the matrix given above the three arrays would look like this:

A -7 4 2 1 -5 4 2 -11 3 6 -2 2 1 2 3 -9 3 7 -9

JA 0 1 3 0 1 3 1 2 3 4 3 5 1 2 3 4 5 2 5

IA 0 3 6 10 12 17 19

In this exercise we will implement a C type to represent such matrices.

Again, there are specific tests for this exercise staring with TestMatrix. To build only
these tests you can call Ninja with the following arguments:

ninja test_matrix

If you want to execute only the matrix tests and skip the tests for the other exercises
you can use

ctest --verbose --tests -regex TestMatrix

Make sure all matrix tests complete successful after you have finished working on this
exercise.

a) Create a C type CsrMatrix that represents a sparse matrix in the format that has
been described above. An object of the matrix should be created by the function

int csr_create(int rows, int columns, int nnz, CsrMatrix* matrix);

where rows corresponds to n, columns to m, nnz is the number of non-zeros k of the
matrix and matrix is the input parameter of the matrix to be created. The function
should return 0 if the construction has been successful or a non-zero value (e.g. −1)
if there have been any problems during the construction. The function

void csr_free(CsrMatrix* matrix);

is then used to free all storage that has been allocated during the call of csr_create.

b) Create a function csr_assemble to initialize a matrix with values. The initialization
is done by passing triplets to the assemble function, where a triplet is a 3-tuple of a
value and its row and column index (aij , i, j). The signature of the function should
be the following:

void csr_assemble(CsrMatrix matrix,

const PmscScalar* values,

const int* row_indices,

const int* column_indices,

int nnz);

where matrix is the matrix object to fill with values, values are the values aij to store
into the matrix, row_indices and column_indices are the corresponding indices i
and j and nnz is the total number of values to be set. Assume that row_indices is
sorted in ascending order.

4

c) Create getters and setters to retrieve and modify the data of the matrix. The following
signatures should be used for the functions:

• A function that returns the number of rows n of the matrix.

int csr_get_rows(CsrMatrix matrix);

• A function that returns the number of columns m of the matrix.

int csr_get_columns(CsrMatrix matrix);

• A function that returns the total number of non-zero entries k in the matrix.

int csr_get_nnz(CsrMatrix matrix);

• A function that returns the number of non-zero entries in a specific row i deter-
mined by row_index.

int csr_get_row_nnz(CsrMatrix matrix, int row_index);

• A function that returns the column index j of a non-zero entry in a specific row
i. Here row_index is the row index i and non_zero_index is the index of the
non-zero entry in that row.

int csr_get_row_nz_index(CsrMatrix matrix,

int row_index,

int non_zero_index);

• A function that returns the value aij of a non-zero entry in a specific row i. Here
row_index is the row index i and non_zero_index is the index of the non-zero
entry in that row.

PmscScalar csr_get_row_nz_entry(CsrMatrix matrix,

int row_index,

int non_zero_index);

• A function that modifies the value aij of a non-zero entry in a specific row i.
Here row_index is the row index i, non_zero_index is the index of the non-zero
entry in that row and value is the new value to be set at that entry.

void csr_set_row_nz_entry(CsrMatrix matrix,

int row_index,

int non_zero_index,

PmscScalar value);

d) Create a function mat_vec_multiply to compute a matrix vector product r = Av.
The signature of the function should be the following:

void mat_vec_multiply(Vector r, CsrMatrix A, Vector v);

where A is the left-hand-side matrix, v is the right-hand-side vector and r is the vector
to save the result into. Assume that all arguments have been created with the correct
dimensions before the multiplication is called. Can you implement this function by
only using the interface provided by the getters/setters for the matrix and vector
given above?

5

Exercise 4. (Iterative solvers)

a) Create a function gs_solve that solves a linear system of equations Au = b via the
iterative Gauss-Seidel method similar to the exercise from the last sheet. We will use
two different stopping criteria: a maximum number of iterations and the l2-norm of
the residual r = b − Au, that should be less than some given epsilon |r| < ε. The
signature of the function should be the following:

int gs_solve(CsrMatrix A, Vector u, Vector b,

PmscScalar tolerance, int max_iterations);

where A and b are the input parameters and u is the resulting vector. Use the initial
values of u as initial guess to start the solver. tolerance represents the ε for the
residual stopping criteria and max_iterations corresponds to the maximum number
of iterations criteria kmax. The function should return zero when the residual epsilon
has been reached and a non-zero value if the system of equations could not be solved.

A test that tries to solve a system of equations with the matrix given above is available
in the repository and can be built by

ninja test_solver

If you want to execute only the solver tests and skip the tests for the other exercises
you can use

ctest --verbose --tests -regex TestSolver

Hint: You are allowed to extend the interface of your linear algebra library with ad-
ditional functions. Try to make sure that the additional functions you added do not
leak implementation details of your structures, i.e. only use getters/setters etc.

b) The repository includes two files io.h and io.c that provide you with functions to
read a Vector and a CsrMatrix from a file.

The function

int vec_read(const char* file_path, Vector* vector);

reads a vector from a file given by file_path into vector and can be used instead
of vec_create and vec_assemble.

The function

int csr_read(const char* file_path, CsrMatrix* matrix);

reads a sparse matrix from a file given by file_path into matrix and can be used
instead of csr_create and csr_assemble.

The function csr_read contains at least 3 errors. Find and correct those errors. A
test for the IO routines can be built by

ninja test_io

If you want to execute only the IO tests and skip the tests for the other exercises you
can use

ctest --verbose --tests -regex TestIo

6

c) In the data directory of the repository there are two files test_matrix.txt and
test_rhs.txt. These contain data for a slightly bigger system of equations to be
solved that has been generated by a numerical code to discretize and solve a partial
differential equation.

Write a program that reads those files into a CsrMatrix and Vector using the I/O
routines from the previous exercise.

Modify the interface of gs_solve in such a fashion that it includes the number of
iterations that were required to solve the system of equations up to the given residual
epsilon as an output parameter.

Call the Gauss-Seidel solver on the given equation. Use a vector u that has all zero
values as initial guess for the solver. Use a solver tolerance of ε = 1e−10 and the
maximum iterations limit kmax = 50000.

The program should report the final number of iterations required to reach the epsilon
residual tolerance to the terminal.

There are no automatic tests for this exercise.

7

