
Programming Methods in
Scientific Computing

Winter semester 2019/2020
Prof. Dr. Marc Alexander Schweitzer

Clelia Albrecht and Albert Ziegenhagel

Exercise sheet 3.

The assignment corresponding to this exercise sheet can be found at https://

classroom.github.com/g/Zt365nvH. Accept the assignment and download the starter
code repository.

Transfer to modern C++

In the following exercises we want to transfer the functionalities of the linear algebra
and solver library from the last exercise sheet from C to modern C++. As most algorithms
are almost identical, pay close attention to your code structure and resource manage-
ment. Please note that, similar to before, the code repository provides a common folder
in which you can find some headers predefining the scalar type (scalar_t) and the
space_dimension. Do not forget to include these headers whenever you need them.

Exercise 1. (Linear algebra in C++)

a) Consider the Vector type from the last exercise sheet. Transfer its functionality into
modern C++ code. To this end, write a class Vector. After you have finished this
exercise all tests starting with Vector should execute successfully. To build only
these tests you can call Ninja with the following argument:

n in ja t e s t v e c t o r

If you want to execute only the vector tests and skip the tests for the other exercises
you can use

c t e s t −−verbose −−t e s t s−regex vec to r

Start by making sure your Vector class is a semi-regular type by providing the
following functions:

• A default constructor

Vector();

• Copy and move constructor

Vector(const Vector& other);

Vector(Vector&& other) noexcept;

• Copy and move assignment

Vector& operator=(const Vector& other);

Vector& operator=(Vector&& other) noexcept;

1

https://classroom.github.com/g/Zt365nvH
https://classroom.github.com/g/Zt365nvH

Furthermore, your Vector class should provide the following functions:

• A constructor that sets the size of your vector

explicit Vector(int size);

• A constructor that enables the use of aggregate initilization:

Vector(std::initializer_list<scalar_t> init);

• Get- and set-functions for the vector’s values by overloading the []-operator:

const scalar_t& operator[](int i) const;

scalar_t& operator[](int i);

• A get-function for the vector’s size:

int size() const;

b) Now transfer the CsrMatrix type’s functionalities from C to modern C++ code by
writing a class SparseMatrix. As before, completing this exercise should make all
tests starting with Matrix execute successfully. To build only these tests you can call
Ninja with the following argument:

n in ja t e s t m a t r i x

If you want to execute only the matrix tests and skip the tests for the other exercises
you can use

c t e s t −−verbose −−t e s t s−regex matrix

This class should also be a semi-regular type, meaning that it should provide the
following functions:

SparseMatrix();

SparseMatrix(const SparseMatrix &other);

SparseMatrix(SparseMatrix &&other) noexcept;

SparseMatrix& operator=(const SparseMatrix& other);

SparseMatrix& operator=(SparseMatrix&& other) noexcept;

Furthermore, your matrix class should provide a constructor which is able to take the
number of rows, the number of columns and a std::vector of triplets that contain
the row index, column index and value of each non-zero entry of your sparse matrix:

explicit SparseMatrix(int rows, int columns,

const std::vector<triplet_type>& entries);

where triplet_type is a std::tuple consisting of two integers for the indices and
a scalar type for the value:

using triplet_type = std::tuple<int, int, scalar_t>;

You should also implement get-functions for the number of rows, the number of
columns and the number of non-zero entries of your matrix,

2

int rows() const;

int columns() const;

int non_zero_size() const;

as well as a function that returns the number of non-zero entries of a specific row r.

int row_nz_size(int r) const;

As before, you’ll need a function that returns the column index of a specific non-zero
entry nz_i of a specific row r

const int& row_nz_index(int r, int nz_i) const;

int& row_nz_index(int r, int nz_i);

and, last, but not least, a function that returns the value of a specific non-zero entry
of a specific row.

const scalar_t& row_nz_entry(int r, int nz_i) const;

scalar_t& row_nz_entry(int r, int nz_i);

c) To make our C++ linear algebra library useful, we furthermore need a handful of
operations using our Vector and SparseMatrix types. You should implement the
following functions in linear algebra/operations.cpp and provide the declarations
in linear algebra/operations.h. This part should make all tests starting with
Operations execute successfully. You can again build only these tests by calling
Ninja with the following argument:

n in ja t e s t o p e r a t i o n s

If you want to execute only the operations tests and skip the tests for the other
exercises you can use

c t e s t −−verbose −−t e s t s−regex ope ra t i on s

• A function to test equality of two vectors. Please note that you can (and
should) use the provided equals function for scalars that can be found in
common/equals.h.

bool equals(const Vector& lhs, const Vector& rhs);

• A function that assigns a constant scalar value to a vector, i.e. all entries of the
vector are set to the scalar value:

void assign(Vector& lhs, const scalar_t& rhs);

• Functions to add and substract two vectors:

void add(Vector& result, const Vector& lhs,

const Vector& rhs);

void subtract(Vector& result, const Vector& lhs,

const Vector& rhs);

3

• A Function to calculate the inner product of two vectors:

scalar_t dot_product(const Vector& lhs, const Vector& rhs);

• A scalar multiplication for vectors and a matrix-vector multiplication:

void multiply(Vector& result, const Vector& lhs,

const scalar_t& rhs);

void multiply(Vector& result, const SparseMatrix& lhs,

const Vector& rhs);

d) Please answer the following questions about the transfer from C to C++ in writing:

• What are the main differences of your implementations?

• Do your linear algebra types need an explicit destructor? Justify your answer.

• What does the explicit specifier for the non-default constructors do?

Exercise 2. (Iterative solvers for sparse matrices)

We want to write a small solver library that uses the linear algebra library from exercise
1. In contrast to the Gauss-Seidel method that we used as linear solver in the last exercise
sheets, we will implement a preconditioned Richardson and preconditioned Conjugate
Gradient (PCG) method in this exercise. As preconditioners we want to use either a
simple Jacobi preconditioner or a Gauss-Seidel preconditioner. Details on the algorithms
can be found in https://web.stanford.edu/class/cme324/saad.pdf.

As stopping criteria we will use a maximum iteration limit k ≤ kmax and a relative
tolerance |rk||r0| < εrel on the l2-norm of the residual rk = b − Axk in iteration k. The
residual r0 = b − Ax0 is the initial residual to be computed by using the initial guess
x0. Please note that the algorithm can be terminated immediately if |r0| = 0 since this
means the initial guess was indeed the correct final solution.

After you have finished this exercise all tests starting with Solvers should execute
successfully. To build only these tests you can call Ninja with the following arguments:

n in ja t e s t s o l v e r s

If you want to execute only the solver tests and skip the tests for the other exercises you
can use

c t e s t −−verbose −−t e s t s−regex s o l v e r s

a) Add a function

int solve(Vector& x, const SparseMatrix& A, const Vector& b,

const std::string& solver_type,

const std::string& preconditioner_type);

to the files solvers/solver.h and solvers/solver.cpp.

Here A and b are the input parameters and x is the resulting vector. Use the initial
values of x as initial guess x0 to start the solver. The parameters solver_type and
preconditioner_type should allow to select the solver and preconditioner combi-
nation to be used. solver_type can be either one of “richardson” or “cg”, while
preconditioner_type can be “jacobi” or “gauss seidel”. Other inputs should not be
accepted by the function.

4

https://web.stanford.edu/class/cme324/saad.pdf

Try to structure your implementation into multiple files to keep your code readable
and discoverable. If you add additional .cpp files you will have to add them to the
solvers_sources in the CMakeLists.txt file.

Use a fixed iteration limit of kmax = 1000 and relative residual tolerance εrel = 1e−15.

b) Can you implement the functionality for the exercise above without any code dupli-
cation? How many and which changes would be necessary if your functions need to
be extended to support another type of solver and/or preconditioner? Write a short
text answering these questions.

Domain Discretization

Many numerical methods, especially those which aim to solve a partial differential equa-
tion (PDE), call for some kind of discrete representation of the computational domain Ω.
While there is a variety of methods available for discretization, one of the most common-
ly used are grids. Broadly speaking, grids are a tesselation of the d-dimensional domain
and come in two flavors: structured and unstructured.

Structured grids have a regular connectivity where the cells are general cuboids and it
is possible to index all nodes via a multi-index α = (α1, . . . , αd). Additionally we can
apply a simple co-lexicographic ordering of the d-dimensional nodes that allows us to

transfer the multi-index α into a single-dimensional index i =
∑d

k=1

(
αk
∏k−1
l=1 nl

)
. This

makes structured grids easy to handle and easy to efficiently implement. Due to the cell
geometry, these grids are not overly flexible and not easily adaptable to every domain
geometry.

Unstructured grids do not have a regular connectivity and thus are more difficult to
manage than structured grids. They are, however, easier to generate automatically and
in a lot of cases better suited to discretize domains with curved boundaries.

In the following, we will concentrate on regular grids, a special case of structured grids
which consists of congruent parallelepiped cells, i.e. all cells have the same shape and
size. In consequence, a grid covering the domain Ω = [l1, u1] × · · · × [ld, ud] with n =
(n1, . . . , nd) nodes in each space dimension has a constant grid spacing h = (h1, . . . , hd)
per dimension, which means that the coordinates xi of each vertex can be computed via
xi = (l1 + α1 · h1, . . . , ld + αd · hd) and the neighbors of each cell are clearly defined.
Figure 1 illustrates a simple 2-dimensional regular grid and the indices (multi-index and
single-dimensional index) of each grid point. Figure 2 demonstrates a 3D example.

Exercise 3. (A Grid Class)

We want to prepare the implementation of the numerical solution of the heat equation
and start with the domain discretization using a regular grid.

The repository provides you with an interface for a regular grid class RegularGrid

that you can find in grid/grid.h, as well as the interfaces to a point class Point

in grid/point.h and a multi-index class MultiIndex in grid/multiindex.h. Addi-
tionally there is a header common/space_dimension.h that provides a global constant
space_dimension to be used by Point, MultiIndex and RegularGrid.

After you have finished this exercise all tests starting with RegularGrid should execute
successfully. There are tests for regular grids in the space dimensions 1, 2 and 3. To build
only these tests you can call Ninja with the following arguments:

n in ja t e s t g r i d 1 d t e s t g r i d 2 d t e s t g r i d 3 d

or just one of them, if you want to build the tests for only a single space dimension. If
you want to execute only the grid tests and skip the tests for the other exercises you can
use

c t e s t −−verbose −−t e s t s−regex g r id

5

i = 0
α = (0, 0)
x = (1.0, 2.0)

i = 1
α = (1, 0)
x = (1.5, 2.0)

i = 2
α = (2, 0)
x = (2.0, 2.0)

i = 3
α = (3, 0)
x = (2.5, 2.0)

i = 4
α = (4, 0)
x = (3.0, 2.0)

i = 5
α = (0, 1)
x = (1.0, 2.5)

i = 6
α = (1, 1)
x = (1.5, 2.5)

i = 7
α = (2, 1)
x = (2.0, 2.5)

i = 8
α = (3, 1)
x = (2.5, 2.5)

i = 9
α = (4, 1)
x = (3.0, 2.5)

i = 10
α = (0, 2)
x = (1.0, 3.0)

i = 11
α = (1, 2)
x = (1.5, 3.0)

i = 12
α = (2, 2)
x = (2.0, 3.0)

i = 13
α = (3, 2)
x = (2.5, 3.0)

i = 14
α = (4, 2)
x = (3.0, 3.0)

i = 15
α = (0, 3)
x = (1.0, 3.5)

i = 16
α = (1, 3)
x = (1.5, 3.5)

i = 17
α = (2, 3)
x = (2.0, 3.5)

i = 18
α = (3, 3)
x = (2.5, 3.5)

i = 19
α = (4, 3)
x = (3.0, 3.5)

Figure 1: Example of a 2D regular grid in d = 2 on Ω = [1.0, 3.0] × [2.0, 3.5] with
n = (5, 4).

Figure 2: An example of a 3D
regular grid (Picture taken from
https://commons.wikimedia.org/w/

index.php?curid=1367858). Not all
hi have to be the same.

6

https://commons.wikimedia.org/w/index.php?curid=1367858
https://commons.wikimedia.org/w/index.php?curid=1367858

a) Implement all missing functionality for the Point class type that is marked with TODO

in grid/point.h and grid/point.cpp. The point type is intended to make it easier
to handle coordinates x = (x1, . . . , xd) in the d-dimensional domain Ω in a dimension
recursive way. Each component xi should be represented by the type alias scalar_t
from common/scalar.h. Do not allocate any memory on the heap for the point type.

b) Implement all missing functionality for the MultiIndex class type that is marked with
TODO in grid/multiindex.h and grid/multiindex.cpp. The multi-index type is in-
tended to make it easier to handle multi-indices α = (α1, . . . , αd) that identify specific
nodes in a d-dimensional regular grid. Each component αi should be represented by
a simple int. Do not allocate any memory on the heap for the multi-index type. Add
additional free functions to convert a multi-index α into the single-dimensional index
i and the other way around.

c) Implement all missing functionality for the RegularGrid class type that is marked
with TODO in grid/grid.h and grid/grid.cpp.

d) The files grid/io.h and grid/io.cpp provide you with a function write_to_vtk

that writes a regular grid to a file in the VTK structured grid file format. These files
can be read and visualized by the program ParaView (https://www.paraview.org).
Write two programs for d = 2 and d = 3 that generate a regular grid for a given
Ω = [l1, u1]× · · · × [ld, ud] and node count per dimension n = (n1, . . . , nd) and writes
this grid to a file. You have to add the executables to be build to the CMakeLists.txt
via add_executable. You can orient yourself on how the test executables are build
within tests/CMakeLists.txt. Run the programs and open the resulting files in
ParaView to check how the grids look like when being visualized. Try to make yourself
familiar with the functionality of ParaView.

7

https://www.paraview.org

