
Programming Methods in
Scientific Computing

Winter semester 2019/2020
Prof. Dr. Marc Alexander Schweitzer

Clelia Albrecht and Albert Ziegenhagel

Exercise sheet 4.

The assignment corresponding to this exercise sheet can be found at https://

classroom.github.com/g/UW-PYwSG. Accept the assignment and download the starter
code repository.

Generic types

Exercise 1. (Templates for linear algebra)

In the previous exercises we’ve used a global type alias scalar_t to specify what type
should be used to represent scalar values in out linear algebra and grid library. While
this is a good start, since it allows us to switch the code easily from one representation
to another one, its global nature still limits us to use the same representation everywhere
throughout the code. In the following we will use C++ templates to generalize our library
so that we can choose the scalar representation for each instantiation of the linear algebra
types. After those changes we could mix vectors and matrices that use single or double
precision float point values or event complex numbers in the same code.

a) Transfer your vector class from the last exercise sheet to a class template with the
following definition

template<typename T>

class Vector

{

// ...

};

where T is the template parameter that represents the scalar type to be stored in the
vector. Make sure all references to the global type alias scalar_t are removed from
the implementation of the class template.

After you have finished this exercise part all tests starting with Vector should execute
successfully. To build only these tests you can call Ninja with the following arguments:

ninja test_vector

If you want to execute only the vector tests and skip the tests for the other exercises
you can use

ctest --verbose --tests -regex vector

b) Transfer your sparse matrix class from the last exercise sheet to a class template with
the following definition

1

https://classroom.github.com/g/UW-PYwSG
https://classroom.github.com/g/UW-PYwSG

template<typename T>

class SparseMatrix

{

// ...

};

where T is the template parameter that represents the scalar type to be stored in the
matrix. Make sure all references to the global type alias scalar_t are removed from
the implementation of the class template.

After you have finished this exercise part all tests starting with SparseMatrix should
execute successfully. To build only these tests you can call Ninja with the following
arguments:

ninja test_matrix

If you want to execute only the matrix tests and skip the tests for the other exercises
you can use

ctest --verbose --tests -regex matrix

c) Transfer all your linear algebra operations from the last exercise sheet to function
templates. E.g. the the add operation of three vectors would have the definition

template<typename T>

void add(Vector<T>& result, const Vector<T>& lhs, const Vector<T>& rhs)

{

// ...

};

where T is the template parameter that represents the scalar type in all vectors.
Expect that all arguments to the operations use the same scalar type. Make sure all
references to the global type alias scalar_t are removed from the implementation of
the functions.

After you have finished this exercise part all tests starting with SparseMatrix should
execute successfully. To build only these tests you can call Ninja with the following
arguments:

ninja test_operations

If you want to execute only the operation tests and skip the tests for the other
exercises you can use

ctest --verbose --tests -regex operations

d) Many algorithms in linear algebra are memory bound instead of CPU bound. This
means that, when the operators that we deal with are sufficiently large, the perfor-
mance of the algorithm is not proportional to the clock rate of the CPU, but depends
on the memory bandwidth. The memory bandwidth (usually measured in bytes/se-
cond) represents the speed by which the computer can transfer data from the main
RAM to the CPU, so that we can perform operations on it. Since modern CPUs have
so called caches that have a lot higher bandwidths than the main memory, but are
very limited in their size, we expect our memory bound algorithms to become slow,
as soon as as the operators are bigger than the cache sizes of the CPU.

To demonstrate these limitations we are going to write a small benchmark: Add
a program to your project that performs a simple add operation c = a + b on

2

three vectors a, b and c of the same size n = 2k. We will incrementally increa-
se the size n by choosing k = {4, . . . , kmax}. Use kmax = 27 if your computer has
at least 8GB of RAM or kmax = 26 if it has no less than 8GB of RAM. Measu-
re the time it takes to perform the operation for vectors that use double, float,
std::complex<double> and std::complex<float>. You might want to repeat each
operation a few times and take the average of the runtimes it took to get more
stable results. Use std::chrono::high_resolution_clock to measure times. Make
sure you pass -DCMAKE_BUILD_TYPE=Release to CMake before building your code,
to make sure the compiler enables all appropriate optimizations.

Generate a plot where you put n on the x-axis and the seconds a single add operation
takes on the y-axis and upload that file as a PNG image to the repository. Use the
right scaling on the x-axis to make the plot look reasonable. Add a second plot where
you put the bandwidth in GB/s on the y-axis. The number of bytes processed by a
single add operation is given by nbytes = 3(n ·m) with m being the size of the scalar
types in bytes (use the sizeof() operator to get the corresponding m for double,
float, std::complex<double> and std::complex<float>). Use 1GB = 109bytes.

Can you see how the scalar representation influences the runtime of the operations?
Is there anything else you can notice from the benchmark results?

Inheritance

Exercise 2. (Class hierarchy for solvers)

On the previous exercise sheet we have tried to build a function that allows us to solve
systems of linear equations with easy to specify combinations of solvers and precondi-
tioners. The solution was laking in multiple aspects:

• Adding more solvers or preconditioners was an invasive operation, meaning we
would need to have access to the source code of the solve function.

• Adding more arguments to control how the solving process should be performed
(e.g. additional stopping criteria) would make the definition of solve less readable
and maintainable. Especially if some of the control parameters would not apply to
all solvers/preconditioners.

• Returning additional results (e.g. the final number of iterations) would make the
definition of solve less readable and maintainable.

• ...

In this exercise we will utilize C++ class inheritance to implement a class hierarchy for our
solvers and preconditioners. We will create two basic interfaces for a solver and a precon-
ditioner represented by an abstract class template Solver<T> and Preconditioner<T>

respectively. The basic interfaces will support a three step procedure to solve an equation
system or apply a preconditioner:

1. Pass the operator matrix to the solver or preconditioner.

2. Set-up the solver or preconditioner.

3. Pass a right-hand-side and solve the system of equations or apply the preconditio-
ner.

The concrete implementations for algorithms like the Conjugate-Gradient-Method or
the Gauss-Seidel-Method will then be written into classes that inherit those interface.
These concrete classes might get additional members to control the behavior of the
specific algorithm if needed. For the solver we will add an intermediate abstract class that

3

<<abstract>>
Solver

void set operator(A)
void setup()
void solve(x, b) = 0
StopReason last stop reason() const

<<abstract>>
IterativeSolver

void set operator(A)
void setup()
void set preconditioner(preconditioner)
void max iterations(value)
...

RichardsonSolver

void set operator(A)
void setup()
void solve(x, b)

CgSolver

void set operator(A)
void setup()
void solve(x, b)

<<abstract>>
Preconditioner

void set operator(A)
void setup()
void apply(x, b) = 0

preconditioner

1

JacobiIteration

void set operator(A)
void setup()
void apply(x, b)

GaussSeidelIteration

void set operator(A)
void setup()
void apply(x, b)

Abbildung 1: UML like class diagram for the solver library.

combines functionality common to all iterative solvers (e.g. control of the iterations or
residual tolerances). See figure 1 for an overview of all class templates to be implemented.

An example code using the solver library we will implement could look as follows:

// Create specific solver and preconditioner

RichardsonSolver <double > solver;

auto preconditioner = std:: make_unique <GaussSeidelIteration <double >>();

// Set solver specific options

solver.set_preconditioner(std::move(preconditioner));

solver.relative_tolerance (1e -15);

solver.max_iterations (1000);

solver.absolute_tolerance (0.0);

// Use generic interface to solve the system

solver.set_operator(A);

solver.setup ();

solver.solve(x, b);

// Report results

std::cout << "Stopped because of "

<< to_string(solver.last_stop_reason ()) << std::endl;

std::cout << "After "

<< solver.last_iterations () << " iterations" << std::endl;

std::cout << "With a final residual norm of "

<< solver.last_residual_norm () << std::endl;

After you have finished this exercise part all tests starting with Solvers should execute
successfully. To build only these tests you can call Ninja with the following arguments:

ninja test_solvers

4

If you want to execute only the solver tests and skip the tests for the other exercises you
can use

ctest --verbose --tests -regex solvers

a) Within solvers/solver.h: Add an abstract class template for the solver with the
following declaration:

template<typename T>

class Solver;

Here the template parameter T is the scalar type to be used by the matrices and vec-
tors involved in the system of equations. The class needs to be default-constructable
and have the following virtual member functions as its public interface:

virtual void set_operator(const SparseMatrix<T>& A);

Which should store a pointer to the operator matrix we want to solve for, internal to
the solver object.

virtual void setup();

Which allows implementations to do some preparation work before we start to solve
a system (e.g. allocate some temporary memory or perform precomputations). The
abstract Solver class can have a default implementation that does nothing. A pre-
condition for this operation to be successful is that set_operator has been called
already.

virtual void solve(Vector<T>& x, const Vector<T>& b) = 0;

A pure virtual member function that has to be implemented by the concrete imple-
mentations if the solver interface. A pre-condition for this operation to be successful
is that set_operator and setup have been called already.

StopReason last_stop_reason() const;

This member should return the reason why the last call to solve stopped. If solve
has not been called yet it should return StopReason::unknown.

b) Within solvers/solver.h: Add an abstract class template for the iterative solvers
with the following definition:

template<typename T>

class IterativeSolver;

The class needs to be default-constructable and have the following member functions
as its public interface:

virtual void set_operator(const SparseMatrix<T>& A);

5

Calls the base classes set_operator function and additionally calls set_operator

on the preconditioner if one has been set already.

virtual void setup();

Calls the base classes setup function and additionally calls setup on the precondi-
tioner if one has been set already.

void set_preconditioner(std::unique_ptr<Preconditioner<T>> preconditioner);

Sets the preconditioner to be used by the iterative solver. Please note that nullptr

can be passed to indicate that no preconditioner should be used at all. Make sure
that an operator that has been set via set_operator to the iterative solver already,
gets passed to the new preconditioner via its set_operator function correctly.

void max_iterations(std::optional<int> value);

std::optional<int> max_iterations() const;

Sets or retrieves the maximum iteration limit kmax for the solver. If std::nullopt
is passed no iteration limit is set which corresponds to kmax =∞. The default value
for this parameter should be std::nullopt.

void absolute_tolerance(T value);

T absolute_tolerance() const;

Sets or retrieves the absolute residual tolerance εabs for the iterative algorithm. This
means the solver stop if |rk| ≤ εabs. The default value for this parameter should be 0.

void relative_tolerance(std::optional<T> value);

std::optional<T> relative_tolerance() const;

Sets or retrieves the relative residual tolerance εrel for the iterative algorithm. This
means the solver stop if |rk||r0| ≤ εrel. If std::nullopt is passed the check whether the
relative residual is reached should be skipped. The default value for this parameter
should be std::nullopt.

int last_iterations() const;

T last_residual_norm() const;

Retrieves the final number of iterations k and the final residual norm |rk| af-
ter the last call to solve. The values returned by this function are undefined if
last_stop_reason is StopReason::undefined.

c) Within solvers/preconditioner.h: Add an abstract class template for the precon-
ditioner with the following declaration:

template<typename T>

class Preconditioner;

6

Here the template parameter T is the scalar type to be used by the matrices and vec-
tors involved in the system of equations. The class needs to be default-constructable
and have the following virtual member functions as its public interface:

virtual void set_operator(const SparseMatrix<T>& A);

Which should store a pointer to the operator matrix we want to apply the precondi-
tioner to for, internal to the preconditioner object.

virtual void setup();

Which allows implementations to do some preparation work before we start to apply
the preconditioner (e.g. allocate some temporary memory or perform precomputa-
tions). The abstract Preconditioner class can have a default implementation that
does nothing. A pre-condition for this operation to be successful is that set_operator
has been called already.

virtual void apply(Vector<T>& x, const Vector<T>& b) = 0;

A pure virtual member function that has to be implemented by the concrete imple-
mentations if the preconditioner interface. A pre-condition for this operation to be
successful is that set_operator and setup have been called already.

d) Within solvers/richardson.h: Add an class template for the Richardson method
with the following declaration:

template<typename T>

class RichardsonSolver;

This class should inherit the iterative solver interface and override at least the
solve() member function with the specific implementation for the Richardson solver.
Make sure the last stop reason, the last number of iterations and the last residual
norm are set correctly and can be retrieved by the respective member functions from
the IterativeSolver interface.

e) Within solvers/cg.h: Add an class template for the Conjugate-Gradient method
with the following declaration:

template<typename T>

class CgSolver;

This class should inherit the iterative solver interface and override at least the
solve() member function with the specific implementation for the Conjugate-
Gradient solver. Make sure the last stop reason, the last number of iterations and the
last residual norm are set correctly and can be retrieved by the respective member
functions from the IterativeSolver interface.

f) Within solvers/jacobi_iteration.h: Add an class template for the Jacobi precon-
ditioner with the following declaration:

7

template<typename T>

class JacobiIteration;

This class should inherit the preconditioner interface and override at least the apply()
member function with the specific implementation for the Jacobi preconditioner.

g) Within solvers/gauss_seidel_iteration.h: Add an class template for the Gauss-
Seidel preconditioner with the following declaration:

template<typename T>

class GaussSeidelIteration;

This class should inherit the preconditioner interface and override at least the apply()
member function with the specific implementation for the Gauss-Seidel preconditio-
ner.

Finite Differences for the Poisson equation

The following section gives a short introduction to the Finite Difference Method (FDM)
for the Poisson equation. If you are interested in more mathematical details, we recom-
mend the lecture Wissenschaftliches Rechen I.

The next step in our quest to implement a numerical solver for the solution of the heat
equation is the discretization of the equation itself with help of our grid structure.

To this end, we first take a look at the steady-state heat equation, which is also called
the Poisson equation

−∆u = f, (1)

where ∆ denotes the Laplace operator

∆u :=
d∑
i=1

∂2u

∂x2i
. (2)

In this context, f : Rd ⊃ Ω→ R is usually given and we look for a function u : Ω→ R to
solve the equation. On a finite domain, we also need some kind of boundary conditions to
find a unique solution to this problem. In this practical lab, we will use so-called Dirichlet
boundary conditions which prescribe specific function values g on the boundary ∂Ω for
the solution u. Thus, we have to solve the Poisson problem

−∆u = f on Ω,

u = g on ∂Ω.
(3)

For the numerical solution of the Poisson problem, we need to find a method to discretize
equation (1), where discrete in this context means that we calculate the solution only
on a finite number of points. The most intuitive way would be to discretize the diffe-
rential operator ∆ directly, discretizing the derivatives by making use of the differential
quotient. This is called the Finite Difference Method (FDM).

Let Ωh be a discrete representation (i.e. a grid) of our domain Ω. We denote the space
of discrete grid functions by Vh, i.e.

Vh := {uh : Ωh → R} . (4)

8

These functions are only defined at the grid points of Ωh by their values. Thus the
interpolation operator

Ih : C(Ω)→ Vh (5)

maps continuous functions u : Ω → R onto their discrete representation uh =
{u(x1, . . . , xd)|(x1, . . . , xd) is a grid point of Ωh}. We denote single values of uh, i.e. so-
me value u(x1, . . . , xd) by uα, where α is the multi-index corresponding to the grid point
(x1, . . . , xd).

We can now define the difference formulas in one dimension (here we can drop the multi-
index and use just the single index) for an interior node (not a boundary node) xi to
approximate the first derivative of u in xi:

• Backward difference: (D−u)i = ui−ui−1

h

• Forward difference: (D+u)i = ui+1−ui
h

• Central difference: (D±u)i = ui+1−ui−1

h

The first two approximate u′(xi) with an approximation error of order O(h), while the
second one approximates the derivative with an approximation error of order O(h2) (this
can be proven via Taylor expansion).

Similiarly to the first derivative, we can approximate the second derivative via the second
order difference

(D2u)i =
ui+1 − 2ui + ui−1

h2
. (6)

As for the approximation of the first derivative, Taylor expansion can be used to prove
that this approximation is of order O(h2).

We can now use the second order difference to approximate the Laplace operator in more
than one dimension. In 2d, this leads to

(∆hu)(i,j) = (D2
x1x1u)(i,j) + (D2

x2x2u)(i,j)

=
u(i+1,j) − 2u(i,j) + u(i−1,j)

h2x1
+
u(i,j+1) − 2u(i,j) + u(i,j−1)

h2x2

(7)

when we approximate ∆u(x(i,j)). Here, hx1 and hx2 denote the spacing of the regular
grid in x1 and x2 direction, respectively. This is also called the five point stencil, as there
are only five points involved. In case of a Cartesian grid, i.e. all grid spacings are the
same or hx1 = hx2 = h, we can simplify this to

− (∆hu)(i,j) =
4u(i,j) − u(i+1,j) − u(i−1,j) − u(i,j+1) − u(i,j−1)

h2
, (8)

which is often written in the stencil form

1

h2

 −1
−1 4 −1

−1

 . (9)

For the discretization of the right hand side of (1), we can use the interpolation operator
(5) on the right hand side function f , which leads to

fh = {f(x1, . . . , xd)|(x1, . . . , xd) is a grid point of Ωh}. (10)

Putting everything together, we derive the discrete version of (1), which is

− (∆hu) = fh (11)

9

at every grid point of Ωh. Switching from multi-index notation to single-index notation
for our grid points (cmp. exercise sheet 3), we can rewrite (11) as a system of linear
equations

Au = f, (12)

where A represents the negative of the discrete Poisson operator, f is the discrete right
hand side function (for ease of notation) and u is the approximate solution to (1) that
we are looking for. For details on why this actually works, we refer again to the lecture
Wissenschaftliches Rechnen I.

For the complete discretization of (3), we still need to consider the Dirichlet boundary
conditions, i.e. we want to derive a system of linear equations

Ãu = b, (13)

which discretizes (1) as (11) does, but takes boundary conditions into account as well.
There are several ways to impose uh = g on the boundary of Ωh. In this practical lab,
we concentrate on the following way:

Let x be a boundary node with grid multi-index α and grid single-index i. Then we need
to impose uα = gα = g(x). We achieve this by setting the diagonal entry of the system
matrix Ã, ãii = 1 and all entries ãij = 0. The entry on the right hand side is set to the
corresponding value of the boundary function, bi = g(x).

To make sure our system matrix is still symmetric, and because we know the specific
value of the boundary nodes, we still need to modify entries of nodes which are neighbors
of boundary nodes. Let x be a node with grid index i, neighbor to a boundary node
with grid index j. The value of the boundary node is known, so its value can be set in
the second order difference formula (6) and brought to the right hand side (the entry bi
will be modified). The matrix entry ãji is then explicitly set to zero (this will lead to a
few explicit zero entries in your sparse matrix which are stored anyways).

Exercise 3. (Grid Functions)

For our heat equation project, we need a class to handle data (discrete function values)
on a grid. In the starter code repository, you will find a grid subfolder. Into this folder,
you need to transfer your Grid class from the last exercise sheet. Additionally, you can
find a gridfunction.h, which you should use to solve the following exercises.

a) Write a GridFunction template class. This class should be able to match discrete
function values to their grid points. Before you start writing your code, think about
the following questions:

• What is the best way to represent and store the function values of your grid
function? Can you re-use any of your written classes? Why is your solution a
good one, regarding the use of your GridFunction in the heat equation solver
project?

• In consequence, what is the template parameter of the template class?

• Does your function need any more data members? Why?

• What functionalities does your class need to provide? Take a look at the function
provided in grid/io.h that visualizes a GridFunction. Which functions are
needed for the visualization and what is their function header? Make sure to
implement them to be able to use the visualization. What functionalities will be
useful when using your grid function in your Poisson solver?

Note that for our heat equation project, your GridFunction class should have at
least two constructors: One to construct a constant grid function, i.e. initilize all

10

discrete function values to the same value and a second one which correspnds to the
interpolation operator (5). This constructor should evaluate a function on the grid’s
nodes and match them to the corresponding function values.

b) Write a short text explaining your GridFunction class, answering the questions above
as a guideline.

c) The file grid/io.h contains a function for writing a vtk-file to visualize your
GridFunction with ParaView. Use this function to visualize

(a) a 2d constant grid function

(b) the discrete representation of f(x) = (x1 − 1)2 + (x2 − 2)2 on Ω = [0, 1]× [0, 2]

with different grid spacings h. Create at least one png of each function (using grids
with inner nodes) and upload them to your repository.

d) You’ll have noticed that there are no tests for this class. Think about at least two
sensible tests for the functionalities of your class and implement them.

Exercise 4. (Assembly of the Poisson matrix)

In this exercise, we will assemble the system matrix and right hand side to find a discrete
solution to (3).

Write a template function assemble poisson matrix which should assemble the Poisson
matrix and a right hand side for a given grid, right hand side function and boundary
value function. Thus, the function should have the following function header:

template<typename T>

std::pair<SparseMatrix<T>, Vector<T>> assemble_poisson_matrix

(const RegularGrid& grid,

const std::function<T(const Point&)>& rhs_function,

const std::function<T(const Point&)>& boundary_function)

Exercise 5. (Solving the Poisson equation with FDM)

We now have gathered all the basic structures needed to write a Poisson solver. Consider
the Poisson problem (3) in 2 dimensions. Let Ω = [0, 1]2, the right hand side function
f(x) = −6 and the boundary function g(x) = 1 + x21 + 2x22.

a) Write a main function to solve the 2d Poisson problem above, using the interfaces of
your implemented data types.

b) Use the output function provided in grid/io.h to visualize your solution u in Para-
View. Create a png picture of your solution and upload it to your repository.

c) The analytical solution to this problem is given by the boundary value function g
(please verify that for yourself). Visualize the discrete representation of this function
in ParaView, too, and compare it to your solution. Use the same grids for both and
try out different grid spacings. Create a png picture and upload it to your repository.

11

