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Exercise sheet 5.

The assignment corresponding to this exercise sheet can be found at https://

classroom.github.com/g/ajtW5mB1. Accept the assignment and download the star-
ter code repository. Copy your code from exercise sheet 4 to the corresponding files in
this repository.

Parallelization

Exercise 1. (Install an MPI implementation)

We first need to make sure that an implementation of the MPI standard is installed on
your computer. There are multiple vendors that provide an MPI implementation. We
will use OpenMPI on Linux and macOS and Microsoft MPI (MSMPI) on Windows.

a) Install MPI on your computer:

• Linux: Open a terminal and run

sudo apt−get update
sudo apt−get i n s t a l l l ibopenmpi−dev

for Ubuntu. For other Linux distributions, choose your corresponding package
manager.

• Windows: You can download Microsoft MPI from https://www.microsoft.

com/en-us/download/details.aspx?id=100593. You will have to download
both packages msmpisetup.exe and msmpisdk.msi. After downloading the in-
stallers, install them by executing the installers and following the instructions.

• macOS: Open a terminal and run

brew i n s t a l l open−mpi

to install OpenMPI.

Exercise 2. (A Partition class)

As a first step for parallelizing our linear algebra data structures and operations, we
write a data structure that is able to handle the partition of our linearly indexed data
to several processes 0 ≤ p ≤ P . While our data is indexed by a global index iglobal in
the range [0, N), every process p just has access to a part of the data, indexed by a local
index ilocal in the range [rp, rp+1) ⊂ [0, N). Here rp is the global index which marks the
start of the data owned by process p and rp+1 − rp = Np is its size, with r0 = 0 and
rP+1 = N . Note that, as the rp are ordered, we have Np ≥ 0 for all processes p. The
indices {rp} are called the partition of our data.

Write a ContiguousParallelPartition class that helps you to handle the partition of
your data across several processes. This class should provide a default constructor

explicit ContiguousParallelPartition();
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and a constructor that is able to take an MPI communicator and a pre-existing partition
list

explicit ContiguousParallelPartition(MPI_Comm communicator,

std::vector<int> partition);

Furthermore, we want getter functions for the MPI communicator, the size of the local
data Np for our process p as well as the size of the local data of an arbitrary process q,
Nq:

MPI_Comm communicator() const;

int local_size() const;

int local_size(int process) const;

Additionally, write a getter function for the global data size N :

int global_size() const;

An important functionality of your class should be to match global indices to processes.
To this end, write the following functions:

• A function that finds the owner process to a global index:

int owner_process(int global_index) const;

• A function that determines whether a global index belongs to your local process:

bool is_owned_by_local_process(int global_index) const;

• A function that determines whether a global index belongs to an arbitrary process:

bool is_owned_by_process(int global_index, int process) const;

Furthermore, you will need to switch between local and global indices using the following
functions:

int to_global_index(int local_index) const;

int to_local_index(int global_index) const;

Last, please write two free functions that take care of the actual creation of the partition.
The first one,

ContiguousParallelPartition create_partition(MPI_Comm communicator,

int local_size);

should create a parallel partition by taking an MPI communicator and the local data
size for every process.

The second one creates a uniform partition (the local data has the same size on every
process) taking just the global data size N :
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ContiguousParallelPartition create_uniform_partition(MPI_Comm communicator,

int global_size);

Exercise 3. (A parallelized vector class)

a) Parallelize the Vector class of your linear algebra library. To this end, expand the
interface by adding the following functions:

• A constructor that takes a partition

explicit Vector(ContiguousParallelPartition partition);

• A constructor that takes an MPI communicator and the local data size

explicit Vector(MPI_Comm communicator, int local_size);

• A constructor that takes an MPI communicator and the local data for this
process

explicit Vector(MPI_Comm communicator,

std::initializer_list<value_type> init);

• A getter function for a ContiguousParallelPartition

const ContiguousParallelPartition& partition() const;

What do you have to change regarding the implementation? Make sure all the se-
quential tests still work. All constructors that are not explicitly parallelized should
take MPI COMM SELF as MPI communicator.

b) Parallelize the vector operations (equals, assign, add, subtract, multiply and
dot product). Note: this step does not require the parallelization of the matrix-
vector product. Which parts of your code do you actually have to change? Make sure
all sequential tests for your operations still work.

c) Test the sequential and parallel performance of the vector addition and the inner
product of two vectors. Measure the time of both operations on 1, 2 and 4 processors
(and 8, if your hardware provides as many processors). Similarly to the benchmark
exercise on the last sheet, use vectors of increasing size. What do you observe?

Exercise 4. (Parallelization of the sparse matrix type)

Now we still need to parallelize the SparseMatrix class. As we store our matrix in the
CSR format, we parallelize the matrix by distributing the rows to the processes. To this
end, expand the interface of your class by adding the following functions:

• Two constructors that take a partition for the rows of the matrix and are otherwise
analoguous to the existing sequential constructors:

explicit SparseMatrix(ContiguousParallelPartition row_partition,

int global_columns,

std::function<int(int)> nz_per_row);

explicit SparseMatrix(ContiguousParallelPartition row_partition,

int global_columns,

const std::vector<triplet_type>& entries);
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• Two constructors that take an MPI communicator and are otherwise analoguous
to the existing sequential constructors:

explicit SparseMatrix(MPI_Comm communicator, int local_rows,

int global_columns,

std::function<int(int)> nz_per_row);

explicit SparseMatrix(MPI_Comm communicator, int local_rows,

int global_columns,

const std::vector<triplet_type>& entries);

• A getter function for the row partition:

const ContiguousParallelPartition& row_partition() const;

All constructors that are not explicitly parallelized should take MPI COMM SELF as MPI
communicator. Make sure your parallel matrix type passes the tests.

Exercise 5. (Exchange Pattern and Exchange Data)

Before we can parallelize the matrix-vector product, we need two helper classes that
facilitate communication and the exchange of data across processes. The matrix-vector
product can not be calculated locally on each process, as we might need some vector
entries belonging to a different process, according to the sparsity pattern of the matrix.
In this case, we call the remote process a neighbor of the local process.

In the following, you are allowed to assume that your sparse matrix is symmetric, i.e. if
process q is a neighbor of process p, process p is also a neighbor of process q.

a) Write an ExchangePattern class that stores the ranks of the neighboring processes
and the global data indices of data that has to be send or received during the compu-
tation of the matrix-vector product for the local process. This class has the following
interface:

• A constructor that takes a standard vector of the neighboring processes, global
receive and send indices per neighbor process. Assume that the neighboring pro-
cesses and all send or receive indices per neighbor process are sorted in ascending
order.

ExchangePattern(std::vector<int> neighboring_processes,

std::vector<std::vector<int>> receive_indices,

std::vector<std::vector<int>> send_indices);

• Getter functions for the neighboring processes, receive and send indices:

const std::vector<int>& neighboring_processes() const;

const std::vector<std::vector<int>>& receive_indices() const;

const std::vector<std::vector<int>>& send_indices() const;

Additionally, write a free function that can create an exchange pattern for a given
sparse matrix and the column partition, i.e. the partition of a vector to be multiplied
with the matrix. Make sure that the neighboring_processes, receive_indices

and send_indices that are passed to the ExchangePattern constructor are unique
(to not contain double entries) and are sorted in ascending order.
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template<typename T>

inline ExchangePattern create_exchange_pattern

(const SparseMatrix<T>& matrix,

const ContiguousParallelPartition& column_partition)

b) The second helper class will help you handle the actual data which has been exchan-
ged between the local process and remote processes. It needs to know the exchange
pattern associated with your parallel sparse matrix (and parallel vector).

Write a class ExchangeData with the following interface:

• A constructor that gets an ExchangePattern as well as a vector of the data
which has been received by remote (neighboring) processes. The constructor
simply stores a reference to exchange pattern and the passed data in members
of the class:

explicit ExchangeData

(const ExchangePattern& exchange_pattern,

std::vector<std::vector<T>> data_per_neighboring_process);

• A get function, which returns the correct data to global index which was send
by owner:

const T& get(int owner_rank, int global_index) const;

The implementation of this function can use the reference to the stored exchange
pattern to figure out which neighbor has the given owner_rank and where to
find the entry with the given global_index.

Additionally, write the following free function that creates an ExchangeData object
from a parallel vector and an ExchangePattern:

template<typename T>

ExchangeData<T> exchange_vector_data

(const ExchangePattern& exchange_pattern,

const Vector<T>& vector)

This function should exchange the entries of the vector which is to be multiplied with
the matrix to the processes owning the corresponding matrix rows.

Exercise 6. (Parallelization of the sparse matrix-vector product)

Now that we have implemented the helper classes ExchangePattern and ExchangeData

we can start to implement the parallel matrix-vector product. The general idea is the
following:

• Each matrix stores an instance of ExchangePattern. This pattern depends on the
sparsity pattern of the matrix (which we assume to be constant during the lifetime
of the matrix) and the parallel partition of the vector to be multiplied with. This
partition can be interpreted as a partition of the columns of the matrix.

• When a matrix-vector product is to be executed, we first get the exchange pattern
that is stored in the matrix. It is assumed that the exchange pattern has been
created for the correct parallel partition of the vector.
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• The exchange pattern is used to exchange the entries of the vector to be multiplied
via exchange_vector_data.

• Whenever we need to access an entry of the vector during the multiplication that
is not owned by the local process, we will use the function ExchangeData::get()

to retrieve the value that has been received during the exchange step.

a) Modify the SparseMatrix and add the following public member functions:

void initialize_exchange_pattern(

const ContiguousParallelPartition& column_partition);

const ExchangePattern& exchange_pattern() const;

Where the first function uses create_exchange_pattern to create an exchange pat-
tern for the matrix object and the column partition that is being passed. Since we
assume our matrix to be symmetric we can also assume that the passed column par-
tition is the same as the row partition that is already stored within the matrix. The
created exchange pattern should be stored in a private data member of the matrix.
The second function returns the exchange pattern that is currently stored within the
matrix. It is not valid to call this function before initialize_exchange_pattern

has been called.

b) Modify the multiply function that performs the matrix-vector function to perform
a parallel product as described above.

A C++ Finite Difference solver in Python

Exercise 7. (Export to Python)

In this exercise we will export the whole functionality of the libraries we have written so
far to python, so that applications that are solving specific poisson equations with finite
differences can be written easily in python.

a) First we need to install pybind11 on your computer. We will use the cross-platform
package manager vcpkg (https://github.com/microsoft/vcpkg) to install third-
party libraries. To get started using vcpkg follow these instructions:

• Linux and macOS: Open a terminal and run

cd <WHERE YOU WANT VCPKG TO BE INSTALLED>
g i t c l one https : // github . com/ Microso f t /vcpkg . g i t
cd vcpkg
. / bootstrap−vcpkg . sh

to build vcpkg.

• Windows: Open a PowerShell and run

cd <WHERE YOU WANT VCPKG TO BE INSTALLED>
g i t c l one https : // github . com/ Microso f t /vcpkg . g i t
cd vcpkg
.\ bootstrap−vcpkg . bat

to build vcpkg.

Now that vcpkg has been build, we can use it to install pybind11:

. / vcpkg i n s t a l l pybind11
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b) Add a new file python/module.cpp to your repository that contains the pybind11

entry point PYBIND11_MODULE and all the exporting code. Additionally modify the
root CMakeLists.txt file so that pybind11 is found and a python module named
pmsc is build. To make sure CMake can find your installation of pybind11, we have
to provide an additional parameter to CMake when configuring your project:

cmake . . −GNinja −DCMAKE BUILD TYPE=Debug −DCMAKE TOOLCHAIN FILE=”<
WHERE YOU WANT VCPKG TO BE INSTALLED>/vcpkg/ s c r i p t s /
bu i ldsys tems /vcpkg . cmake”

c) Add code to export wrapper functions for MPI_Init and MPI_Finalize. When calling
MPI_Init, you can pass nullptr for both arguments argc and argv so that you do
not need to pass those parameters from Python.

d) Add code to export the linear algebra types Vector and SparseMatrix and all the
operations to python. Use the global type definition scalar_t as template parameter
for the types. No other template instantiations need to be exported.

e) Add code to export the solver library (solvers, preconditioners and uti-
lity types like StopReason) to python. To simplify exporting the func-
tionality to python, change the set_preconditioner member function of
IterativeSolver to take a std::shared_ptr<Preconditioner> instead of a
std::unique_ptr<Preconditioner>.

f) Add code to export the grid library with all its types (Point, MultiIndex,
RegularGrid and GridFunction) to python. Make your python module link to the
CMake target grid_2d so that your python module will support 2-dimensional types.

g) Add code to export the IO functions for VTK output to python. Since
std::filesystem::path is not supported by pybind11 by default, you have to
add a small helper function (like in the lecture slides) that takes a std::string and
than forwards this to the write_to_vtk functions.

h) Add code to export the assemble_poisson_matrix to python.

i) Write a simple python script that does the following:

• Import your python module

• Call your exported MPI init function

• Set-up a simple 2D grid

• Assemble a discretization of the Poisson equation using boundary conditions and
a right-hand-side given as Python functions. You can use the same boundary
conditions and right-hand-side as described on the last exercise sheet or try
different ones.

• Create a grid function to hold the final result.

• Create and set-up a solver with preconditioner. Solve the assembled equation
system

• Write the resulting grid function into a VTK file

• Call your exported MPI finalize function
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