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Exercise sheet 6.

The assignment corresponding to this exercise sheet can be found at https://

classroom.github.com/g/J46qGHUT. Accept the assignment and download the star-
ter code repository. Copy your code from exercise sheet 5 to the corresponding files in
this repository.

Parallelization of the Poisson solver

In this exercise we want to complete the parallelization of our finite differences solver.
The main step that is missing is to parallelize the grid structure. We will do this by
applying a domain decomposition approach. This means each node of the grid will be
assigned to a single process that becomes the owner of that node. After that, each
process performs work only on the nodes that it owns and additionally might need to do
some extra work for nodes that have neighbors which are owned by a different process.
There are two implications of this approach:

• Each process should get a similar amount of nodes, so that the work (aka. load) is
distributed evenly.

• The number of nodes that have neighbors that belong to another process should
be minimized.

In the last exercise each node could be identified by a multi-index α and a flat-index i.
The flat-index i implied a global co-lexicographic ordering of the nodes (compare figure
1).

For the parallelization of the grid onto P processes we will now split the grid into P
as close to equally sized parts as possible. Instead of just splicing the domain into P
parts, we will try to choose parts that are as close to squares as possible. This will
try to minimize the number of nodes that are located at process borders. To perform
this splitting we need find the number of processes per space dimension Pd so that
P =

∏d−1
i=0 Pd (compare figure 2).

After that splitting each process can introduce local indices il and αl that take into
account only the nodes that are local to the process. The global multi-index αg is assigned
to each node the same way as in the non-parallel case. The global index ig of a node

that is owned by the process p is defined by ig = il +
∑p−1

q=0 Nq where Nq is the number
of nodes owned by the process with the rank q (compare figure 3 and 4).
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Figure 1: Non-distributed grid. Each node is identified by a co-lexicographically ordered
flat-index i and a multi-index α.
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Figure 2: Domain decomposition onto P = 12 processes with P0 = 4 and P1 = 3. Each
process is identified by its rank p as well as its coordinates β.
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Figure 3: Grid distributed onto two processes (blue: p = 0, β = (0, 0), red: p = 1,
β = (1, 0)). Each node is identified by the local indices il and αl as well as the global
indices ig and αg.
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Figure 4: Grid distributed onto four processes (blue: p = 0, β = (0, 0), red: p = 1,
β = (1, 0), green: p = 2, β = (0, 1), yellow: p = 3, β = (1, 1)). Each node is identified by
the local indices il and αl as well as the global indices ig and αg.
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Exercise 1. (Parallelization of the grid class)

a) First we will introduce an additional function to ContiguousParallelPartition

that might come handy in the following implementations. Add the function

int to_global_index(int local_index, int owner_process) const;

That allows us to convert the local_index il of the owner_process p to its global
index ig.

b) Add a constructor to the the RegularGrid class with the following signature:

RegularGrid(MPI_Comm communicator,

Point min_corner,

Point max_corner,

MultiIndex global_node_count_per_dimension);

This constructor should distribute the grid onto the P processes as described abo-
ve. Use the functions MPI_Dims_create to compute the values for Pd. After that
you can use MPI_Cart_create to create a new MPI communicator that has topo-
logical information and the coordinates β attached to it. Afterwards you can use
MPI_Cart_coords to get the coordinates β of a process with rank q from that com-
municator and MPI_Cart_rank to the rank q of the process at the coordinates β.
Create and store an object of ContiguousParallelPartition that uses the number
of local nodes Np as the local size.

c) Add a getter for the parallel partition of the grid:

const ContiguousParallelPartition& partition() const;

d) Add getters to retrieve the processes per dimension Pd and the coordinates β of the
local process p from the grid.

MultiIndex processes_per_dimension() const;

MultiIndex local_process_coordinates() const;

e) Add getters for the node counts per dimension to the grid class:

MultiIndex global_node_count_per_dimension() const;

MultiIndex node_count_per_dimension() const;

MultiIndex node_count_per_dimension(int process_rank) const;

The first functions returns the total number of nodes per dimension of the whole grid
over all processes. The second function returns the number of nodes in each direction
that are owned by the current process p. The last function returns the number of
nodes in each direction for any other process q.

f) Modify the meaning of the functions from the previous exercise in the grid:
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int number_of_nodes() const;

int number_of_inner_nodes() const;

int number_of_boundary_nodes() const;

All this functions should return the number of all/inner/boundary nodes of the com-
plete grid, and not only the part local to the current process.

g) Modify the meaning of the functions from the previous exercise in the grid:

int number_of_neighbors(int local_node_index) const;

int neighbors_of(int local_node_index,

std::array<std::pair<int, int>, space_dimension>& neighbors) const;

bool is_boundary_node(int global_node_index) const;

Point node_coordinates(int global_node_index) const;

scalar_t node_neighbor_distance(int local_node_index,

int neighbor_direction,

NeighborSuccession neighbor_succession) const;

All function arguments that are called local_node_index accept the local index
il of a node. This means they can only be called for nodes that are owned by the
current process p. Function arguments that are called global_node_index accept
the global index ig of a node. This means they accept any node and need to return
correct results for those nodes even if the owner q of that specific node is not the
local process p.

The function neighbors_of should put the global indices ig of the neighbors into
its output parameter neighbors.

Exercise 2. (Parallelization of the solvers)

In the last exercise we parallelized our linear algebra types (matrix and vector) and all
operations already. Now we want to make sure that we can use the distributed matrices
and vectors in our linear solvers. Since the solvers basically just use the already parallel
matrix-vector product and vector dot-product, this is actually a pretty straight forward
task to be done:

a) Check your code of Solver, IterativeSolver, RichardsonSolver, CgSolver and
JacobiIteration (not the GaussSeidelPreconditioner) for all places where a
temporary vector is created. Replace the call to the non-parallel vector construc-
tor that takes the size of the vector with a call to the parallel vector constructor that
takes the ContiguousParallelPartition as first argument.

b) Usually no other changes should be required to make the solvers/preconditioners
above work with distributed matrix and vectors types. If your specific implementation
requires additional changes, identify the code locations and perform the changes.

c) To parallelize the GaussSeidelPreconditioner we would need to apply some ad-
ditional changes. Why is this the case and what changes would need to be do-
ne? Create a *.txt file with the answers to the questions and upload it into your
repository. optional: Apply the proposed changes to your implementation of the
GaussSeidelPreconditioner and make sure the preconditioner works with distri-
buted matrices/vectors.
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Exercise 3. (Export to Python)

Let us now make sure we can solve a Laplace problem via a Python script in parallel.
Within the repository there is a file python/module.cpp that contains the export of
some MPI related functionality. It exports a class MpiCommWrapper to python that al-
lows to pass around MPI communicators in python. Objects of that class are implicitly
convertable to and from an MPI_Comm object. Additionally there are exports of two func-
tions mpi_comm_world and mpi_comm_self that allow you to access MPI_COMM_WORLD

and MPI_COMM_SELF from within a python script.

a) Add all exports from the last exercise to the python/module.cpp file.

b) Export the MPI related constructors of your SparseMatrix, Vector and
RegularGrid class to python. Use MpiCommWrapper instead of MPI_Comm when spe-
cifying the argument types of the constructors in the py::init<> calls.

c) Modify your python script that solves the Poisson equation from the last exercise to
create a distributed grid over mpi_comm_world. You should be able to run the Python
script in parallel via

mpiexec -n <NUMBER_OF_PROCESSES> python name_of_my_script.py

Note: on Linux and macOS you might need to use python3 instead of python.

Time Dependent Problems

Now we want to solve a time dependent problem, namely the heat equation, given by

∂Φ

∂t
= α∆Φ + f, α ∈ R, (1)

where Φ is the temperature given as a function of space and time. Here ∆Φ denotes,
as before, the Laplacian of Φ with respect to space. The parameter α is related to the
thermal diffusivity of the material which affects the speed and scale of the problem. A
common simplification, which we will adopt, is to set α to 1.

One immediate observation is that the heat equation in this form looks very similar to
the Poisson equation that you have encountered in exercise sheet 4 (with u replaced
by the temperature Φ). The only difference is an additional term given by the time
derivative of the temperature, ∂Φ

∂t . An intuitive way to understand this equation is given
by the interpretation of the Laplace operator ∆Φ(x) at some point x as the relation of
the average of the “surrounding” values to the value at the point x: If ∆Φ(x) < 0, then
the “surrounding” values are on average smaller than Φ(x) and if ∆Φ(x) > 0 they are
larger. Therefore equation (1) can be interpreted as saying that the temperature at a
point x rises (or falls) if the surrounding temperature is larger (or smaller). The term f
simply represents a heat source or sink inside of the domain.

To be able to solve the heat equation (1) it needs to be accompanied by appropriate
boundary conditions for the temperature in both space and time (which themselves can
depend on time). Therefore, in our case, the continuous problem is given by

∂Φ

∂t
(x, t) = ∆Φ(x, t) + f(x, t) for x ∈ Ω, t ∈ (0, T ],

Φ(x, t) = g(x, t) for x ∈ ∂Ω, t ∈ (0, T ],

Φ(x, 0) = Φ̂0(x) for x ∈ Ω,

(2)

where f(x, t) is a prescribed heat-source, g(x, t) is a prescribed boundary condition in
space and Φ̂0(x) is the prescribed initial temperature.
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To be able to solve problem (2) the differential operators need to be discretized. From
exercise sheet 4 you already know how to do this for the Laplacian ∆Φ using finite
differences. Here, we will also use finite differences to discretize the time derivative ∂Φ

∂t .
For this we divide the time interval [0, T ] into M + 1 uniform time points, such that
the k-th time step is given by tk := k∆t, where ∆t := T

M . We then define for each time
tk a space discretization of the temperature as in exercise sheet 4. Let Φk

i represent the
temperature at time tk at the i-th node. We approximate the time derivative by the first
order differences:

• Backward difference: (D−Φ)ki =
Φki−Φk−1

i
∆t

• Forward difference: (D+Φ)ki =
Φk+1
i −Φki

∆t

• Central difference: (D±Φ)ki =
Φk+1
i −Φk−1

i
2∆t

We will only consider the case of a backward difference in time, which is also known as a
backwards or implicit Euler scheme. The reason for this is that the implicit Euler scheme,
compared to the explicit Euler scheme given by forward differences in time, is uncon-
ditionally stable, which places no restrictions on the choice of the space discretization
parameter h or the time discretization size ∆t. On the other hand it is computationally
more expensive since we need to solve a linear system for each time step.

Inserting these difference operators into the heat equation and rearranging yields the
discretized form of (2) at time tk

(D−Φ)k −∆hΦk = fk. (3)

Similarly as in exercise sheet 4 for the Poisson problem, we can bring all spatial boundary
conditions to the right hand side. This yields the system

(D−Φ)k + ÃkΦk = bk, (4)

where Ãk and bk are the usual system matrix and right hand side vector of the Poisson
problem with incorporated boundary conditions.

All that is now left is to handle the finite difference quotient (D−Φ)k. The idea is to
split (D−Φ)k into unknown and known parts, namely

(D−Φ)ki =
Φk
i − Φk−1

i

∆t
=

Φk
i

∆t
−

Φk−1
i

∆t
. (5)

We can then bring the known part
Φk−1
i
∆t to the right hand side and define a new right

hand side vector dk such that

dki :=

{
bki +

Φk−1
i
∆t node i is an internal node

bki otherwise.
(6)

Similarly, we modify the system matrix to deal with the unknown part, giving a new
system matrix C with

Ck
i,j :=

{
Ãi,j + 1

∆t i = j and node i is an internal node

Ãi,j otherwise.
(7)

The final discretized linear system for time step tk is then given by

CkΦk = dk. (8)
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This method is also called the BTCS (Backwards Time, Centered Space) scheme. We
can immediately see that we only need to store the temperature for the last time step to
be able to compute the new solution. Therefore, putting it all together, the pseudocode
of the algorithm looks as follows:

Algorithm 1 BTCS scheme

1: Φprevious ← Φ̂0

2: for 1 ≤ k ≤M do
3: Solve the discrete heat problem (8) for Φk (with Φk−1 = Φprevious)
4: Φprevious ← Φk

Exercise 4. (Assembly of the heat equation matrix)

In this exercise, we will assemble the system matrix and right hand side of the discretized
heat equation (8) for a given time step t.

Write a template function assemble heat matrix which should assemble the heat equa-
tion system matrix C and a right hand side d for a given grid, temperature of the previous
time step, time, time step size, right hand side function and boundary value function.
Thus, the function should have the following function header:

template<typename T>

std::pair<SparseMatrix<T>, Vector<T>> assemble_heat_matrix

(const RegularGrid& grid,

const GridFunction<T>& previous_temperature,

const scalar_t t,

const scalar_t delta_t,

const std::function<T(const Point&, const scalar_t)>& rhs_function,

const std::function<T(const Point&, const scalar_t)>& boundary_function)

Make sure this function also works correctly in parallel and export it to python using
pybind11 as on exercise sheet 5.

Exercise 5. (Solving the Heat equation with FDM)

Consider the heat equation (2) in two dimensions. Let Ω = [0, 1]2, the right hand side
function f(x, t) = −4, boundary function g(x, t) = 1 +x2

1 + 2x2
2 + 2t, initial temperature

Φ̂0(x) = g(x, 0) and final time T = 2.

a) Write a python script implementing the BTCS algorithm 1 for this problem using
your python module.

b) Use 11 time steps (i.e. M = 10) and your favorite number of nodes to solve the
problem and write the solution for each time step to a VTK file. If you name the files
in ascending order, e.g. heat timestep #.vts, ParaView can load them all at once
and play them in an animation.

c) The analytical solution to this problem is given by the boundary value function g
(please verify that for yourself). Visualize the discrete representation of this function
in ParaView, too, and compare it to your solution. Use the same grids for both and
try out different grid spacings as well as different numbers of time steps. What is the
dependence of the accuracy of the solution on these parameters?

d) Create a png picture for the last time step and upload it to your repository.

Exercise 6. (Solving the Heat equation with FDM, again)
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Consider again the heat equation (2) in two dimensions. We will now consider the
famous diffusion problem of a Gaussian hill. Let Ω = [−2, 2]2, the right hand
side function f(x, t) = 0, boundary function g(x, t) = 0, initial temperature
Φ̂0(x) = γ exp(−αx2

1 − βx2
2) and final time T = 1, where α = 1 and β = γ = 2.

a) Write a python script implementing the BTCS algorithm 1 for this problem using
your python module.

b) Try out different grid and time step sizes. Do you notice any impact on the solver or
the computed solution?

c) Write the solution for each time step to a VTK file.

Measuring Errors

A common way to assess the quality of the computed solution is to measure errors of
the form

eh := u∗ − uh, (9)

where u∗ is the analytical solution to the problem (if known) or some approximation
to it, usually computed on a very fine grid. One is then interested in the convergence
behavior of the computed solution, namely the behavior of the error in a suitably chosen
norm ‖eh‖ as the discretization becomes finer, i.e. h→ 0. In the finite difference setting,
the most natural choice is the l∞-norm

‖uh‖∞ := max
x∈Ω
|uh(x)| = max

xi∈Ωh
|uh(xi)| = max

i
|uh,i|, (10)

where we used the fact that piecewise linear functions (like our grid functions) are
maximal at the nodes.

From the theoretical standpoint one is interested in two key concepts: consistency and
stability. Consistency measures how well the finite difference equations approximate the
partial differential equation, whereas stability deals with the influence of errors from any
source (e.g. truncation errors, errors in the data, ...) on the computed solution. From
the theory it is also known that consistency of order k together with stability implies
convergence of order k, i.e.

‖eh‖∞ ≤ Chk, (11)

with C > 0 a constant independent of h.

For ease of implementation we now come back to the Poisson problem with Dirichlet
boundary conditions. Translating the above considerations to this setting, one can show
consistency of order 2 using a Taylor expansion. Stability can also be shown, however the
proof is slightly more involved. In total we get quadratic convergence for our problem,
where we set h := maxi=1,...,d{hxi}, i.e. the maximum of all grid spacings.

Exercise 7. (Computing the l∞-error)

In this exercise, we will compute the l∞-error for a given analytical solution.

Write a template function compute l infinity error which should compute the l∞-
error ‖eh‖∞ given a grid, a computed solution and an analytical solution. Thus, the
function should have the following function header:

template<typename T>

T compute_l_infinity_error(const RegularGrid& grid,

const GridFunction<T>& computed_solution,

const std::function<T(const Point&)>& analytical_solution)
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Implement it in such a fashion that it also works in parallel and export this function to
python using pybind11.

Exercise 8. (Error measurement)

In this exercise, we will look at the behavior of the error ‖eh‖∞ for the Poisson problem
as we decrease the grid size (or equivalently, increase the number of nodes). For this,
consider the usual Poisson problem on Ω = [0, 1]d for dimension d ∈ {2, 3} with right
hand side f(x) = dπ2Πd

i=1 sin(πxi) and boundary data g(x) = Πd
i=1 sin(πxi).

a) Write a python script that solves the problem for a specified dimension d. Verify that
the analytical solution is given by g and compute the error for a sequence of uniformly
refined grids, i.e.

N = Ni = 2m for all i = 1, . . . , d

for increasing m > 1, where Ni is the number of nodes in spatial direction i. Use the
parallel version of your code to be able to compute errors on very fine grids.

b) Plot the computed errors against N using matplotlib. What is the appropriate axis
scaling to use?

c) Can you observe the theoretical convergence order? Does it depend on the dimension
d? Upload one convergence plot for each of d = 2 and d = 3 to your repository.

d) What happens if you increase the number of nodes only in some spatial directions,
i.e. keep at least one of the Nxi fixed?
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