

## Numerical Algorithms

Winter term 2019/20 Prof. Dr. Carsten Burstedde Christopher Kacwin



Sheet 1

Submission on Tuesday, 15.10.19 in class.

Exercise 1. (chain rule)

Let X, Y, and Z be Banach spaces. Show that for  $f: X \to Y$  and  $g: Y \to Z$  both differentiable, one has that  $g \circ f$  is differentiable and satisfies

$$D(g \circ f)(x) = Dg(f(x)) \circ Df(x)$$
(1.1)

for all  $x \in X$ .

(5 points)

**Exercise 2.** (gradient and inverse)

Let V and W be open subsets of  $\mathbb{R}^n$  and  $j: V \to W$  be differentiable and bijective. Furthermore, assume that Dj(v) is an isomorphism for all  $v \in V$ . For a differentiable function  $f: V \to \mathbb{R}$ , compute  $\nabla(f \circ j^{-1})$ .

(5 points)