

Numerical Algorithms

Winter term 2019/20 Prof. Dr. Carsten Burstedde Christopher Kacwin

Sheet 3

Submission on Tuesday, 29.10.19 in class.

Exercise 1. (higher regularity in 1D)

Let $I = [a, b] \subset \mathbb{R}$ and $f \in L_2(I)$. Let $u \in H_0^1(I)$ be the weak solution to the Poisson equation

$$-u'' = f \tag{3.1}$$

with Dirichlet boundary conditions. Show that u belongs to $H^2(I)$.

(5 points)

Exercise 2. (Stokes equations I)

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain with smooth boundary $\partial \Omega$. The motion of an incompressible viscous fluid with velocity field $u \colon \Omega \to \mathbb{R}^n$ can be modeled with the PDE

$$-\Delta u + \nabla p = f \text{ in } \Omega, \qquad (3.2)$$

$$\operatorname{div} u = 0 \quad \text{in } \Omega, \tag{3.3}$$

$$u = u_0 \text{ on } \partial\Omega. \tag{3.4}$$

Here, $p: \Omega \to \mathbb{R}$ is the pressure, $f: \Omega \to \mathbb{R}^n$ is an external force density field and Δ is the componentwise Laplacian. For the spaces $X = H_0^1(\Omega)^n$ and $M = L_2(\Omega)$, the weak formulation of this problem can be stated as follows: Find $(u, p) \in X \times M$ such that

$$\begin{array}{lll} a(u,v) + b(v,p) &=& (f,v)_{L^2(\Omega)} \\ b(u,q) &=& 0 \end{array}$$

is satisfied for all $v \in X$, $q \in M$. Determine the bilinear maps $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$.

(5 points)

Exercise 3. (Stokes equations II)

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain with smooth boundary $\partial \Omega$. For smooth vector fields $u: \Omega \to \mathbb{R}^n$ consider the energy functional

$$I[u] = \frac{1}{2} \int_{\Omega} \operatorname{Tr}[Du(x)Du(x)^{\top}] - u(x) \cdot f(x) \,\mathrm{d}x$$
(3.5)

with smooth data $f: \Omega \to \mathbb{R}^n$ and $Du(x)_{ij} = \partial_j u_i(x)$. Show that the minimizer of this functional on $\{u \text{ smooth}: \operatorname{div} u = 0, u = u_0 \text{ on } \partial\Omega\}$ satisfies the Stokes equations from Exercise 2 for some appropriate p.

Hint: Introduce p as a Lagrange multiplier.

(5 points)

Exercise 4. (Helmholtz decomposition)

For smooth vector fields $A \colon \mathbb{R}^3 \to \mathbb{R}^3$, the *curl* operator is defined as

$$\operatorname{curl} A = \begin{pmatrix} \partial_2 A_3 - \partial_3 A_2 \\ \partial_3 A_1 - \partial_1 A_3 \\ \partial_1 A_2 - \partial_2 A_1 \end{pmatrix} \in \mathbb{R}^3.$$
(3.6)

Let $\Phi \colon \mathbb{R}^3 \to \mathbb{R}$ be a smooth scalar field. Show that $\operatorname{div}[\operatorname{curl} A] = 0$ and $\operatorname{curl}[\nabla \Phi] = 0$. (5 points)