

Numerical Algorithms

Winter term 2019/20 Prof. Dr. Carsten Burstedde Christopher Kacwin

Sheet 5

Submission on Tuesday, 12.11.19 in class.

Exercise 1. (block matrix)

Consider the block matrix

$$C = \begin{bmatrix} A & B \\ B^{\top} & 0 \end{bmatrix} \in \mathbb{R}^{(m+n) \times (m+n)}$$
(5.1)

with $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{m \times n}$. Assume that $\operatorname{rank}(B) = n$ and that A is positive definite on $\ker(B^{\top})$. Show that C is invertible.

(5 points)

Exercise 2. (Stokes equation III)

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain with smooth boundary $\partial\Omega$. Consider the function spaces $X = H_0^1(\Omega)^n$ and $M = \{p \in L_2(\Omega) : \int_{\Omega} p \, dx = 0\}$ and the weak problem: Find $(u, p) \in X \times M$ such that

$$a(u,v) + b(v,p) = (f,v)_{L^2(\Omega)}$$
(5.2)

$$b(u,q) = 0 \tag{5.3}$$

is satisfied for all $v \in X$, $q \in M$. with $a(u, v) = \int_{\Omega} \operatorname{Tr}[Du(x)Dv(x)^{\top}] dx$, $b(v, q) = \int_{\Omega} q(x) \operatorname{div} v(x) dx$ and $f \in L_2(\Omega)^n$.

- a) Show that two solutions (u_1, p_1) and (u_2, p_2) are equal if additionally $p_1, p_2 \in H^1(\Omega)$.
- b) Define suitable operators $A: X \to X'$ and $B: X \to M', B': M \to X'$ to rewrite the weak problem as an operator equation in $X' \times M'$. Show that B' restricted to $M \cap H^1(\Omega)$ is the negative weak gradient operator $B'(q) = -\nabla q \in L_2(\Omega)^n \subset X'$. (5 points)