

# Numerical Algorithms

Winter term 2019/20Prof. Dr. Carsten Burstedde Christopher Kacwin



Sheet 6

## Submission on Tuesday, 26.11.19 in class.

**Exercise 1.** (mass matrix recursion in 1D)

Consider a set of basis functions  $\{\phi_i(x)\}$  that satisfies the recursion formula

$$\phi_i(x) = (a_i x + b_i)\phi_{i-1}(x) + c_i \phi_{i-2}(x).$$
(6.1)

Show that mass matrix entries  $M_{ij} = \int g(x)\phi_i(x)\phi_j(x) dx$  satisfy

$$M_{ij} = \frac{a_i}{a_{j+1}} M_{i-1,j+1} - \frac{a_i b_{j+1}}{a_{j+1}} M_{i-1,j} - \frac{a_i c_{j+1}}{a_{j+1}} M_{i-1,j-1} + b_i M_{i-1,j} + c_i M_{i-2,j}.$$
 (6.2)  
(5 points)

**Exercise 2.** (mass matrix implementation in 2D)

Let  $\Omega = [0,1]^2$  and  $\phi_{ij}(x,y) = \psi_i(x)\psi_j(y), 1 \le i,j \le p$  a tensorized basis set on  $\Omega$ . For some weight function  $G: \Omega \to \mathbb{R}$ , we approximate mass matrix entries  $M_{ij,kl} =$  $\int_\Omega \phi_{ij}\phi_{kl}G$  via tensorized numerical integration

$$M_{ij,kl} \approx \sum_{\alpha,\beta} w_{\alpha} w_{\beta} \phi_{ij}(x_{\alpha}, x_{\beta}) \phi_{kl}(x_{\alpha}, x_{\beta}) G(x_{\alpha}, x_{\beta})$$
(6.3)

with weights  $w_1, \ldots, w_p$  and nodes  $x_1, \ldots, x_p$ . Derive an algorithm which computes the matrix-vector multiplication y = Mu in  $\mathcal{O}(p^3)$ .

(5 points)

#### **Exercise 3.** (Friedrich's inequality)

Suppose  $\Omega$  is an open and bounded domain. Show that for all  $u \in H^1(\Omega)$  one has

$$||u - [u]||_{L^2(\Omega)} \le C \operatorname{diam}(\Omega) |u|_{H^1(\Omega)},$$
 (6.4)

where  $[u] = \frac{1}{|\Omega|} \int_{\Omega} u(x) \, dx$ . *Hint*: Use the Bramble-Hilbert-Lemma.

# (5 points)

## **Exercise 4.** (First Lemma of Strang)

Let  $\Omega$  be an open and bounded domain in  $\mathbb{R}^2$  and consider the PDE

$$-\Delta u = f \qquad \text{in } \Omega \tag{6.5}$$

$$u = 0$$
 on  $\partial\Omega$  (6.6)

with  $f \in H^1(\Omega)$  and solution  $u \in H^3(\Omega)$ . Moreover, let  $\mathcal{T}_h$  be a quasi-uniform, nonde-generate triangulation of  $\Omega$  with  $h = \max_{T \in \mathcal{T}} \operatorname{diam}(T)$ . Define  $[f](x) \in L^2(\Omega)$  as the piecewise constant function

$$[f]|_{T} = \frac{1}{|T|} \int_{T} f(y) \,\mathrm{d}y \,. \tag{6.7}$$

Let  $V_h$  be the linear finite element space with respect to  $\mathcal{T}_h$  and replace f with [f] in the above PDE, i.e. we consider: Find  $u_h \in V_h$  s.t. for all  $v_h \in V_h$ 

$$\int_{\Omega} \nabla u_h(x) \cdot \nabla v_h(x) \, \mathrm{d}x = \int_{\Omega} [f](x) v_h(x) \, \mathrm{d}x \,. \tag{6.8}$$

Show that  $||u - u_h||_{H^1(\Omega)} \in \mathcal{O}(h)$ .

(5 points)