

## Numerical Algorithms

Winter term 2019/20 Prof. Dr. Carsten Burstedde Christopher Kacwin



Sheet 8

Submission on Tuesday, 10.12.19 in class.

**Exercise 1.** (preconditioning)

For a linear system of equations Ax = b with  $A \in \mathbb{R}^{n \times n}$  symmetric and positive definite, consider a precoditioner  $C \in \mathbb{R}^{n \times n}$  which is also symmetric and positive definite. Show that for a certain choice of a scalar product, the preconditioned CG-method can be stated as the standard CG-method applied to the system  $C^{-1}Ax = C^{-1}b$ .

(5 points)

**Exercise 2.** (the CG method and dual spaces)

Write down the conjugate gradient method in terms of the coefficient vectors  $X_j$ ,  $P_j$ ,  $R_j$ , and  $Z_j$  as derived in the lecture. Propose a stopping criterion that is relative with respect to the initial residual. Compare with the PCG method found in standard literature. Furthermore, prove by induction the usual properties:

- 1.  $A_0$ -conjugacy of the search directions  $P_i$ ,
- 2.  $M_0$ -conjugacy of the (preconditioned residual) vectors  $R_i$ .

(5 points)