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Exercise 1. (3 + 2 = 5 points)

LetX and Y be Banach spaces andK∶ X → Y be a linear operator. We callK a compact operator
if (Kxn)n ⊂ Y has a convergent subsequence whenever (xn) ⊂ X is a bounded sequence.

a) Prove the following statement: Let T∶ X → Y be a bounded linear operator between
Banach spaces such that there is a sequence of linear operators (Tn)n with �nite dimen-
sional range that converges to T with respect to the operator norm. Then, it follows that
T is compact.
Remark: Whether the converse of this statement is true or not is related to an problem that was
unsolved for almost 40 years. The mathematician Per En�o gave a negative answer in 1972 and
recieved a living goose as prize from Stanislaw Mazur, who had formulated the problem in 1936.

Source: http://perenflo.com
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b) Now, let Ω ⊂ ℝd be a polygonal domain. Use the statement of b) to prove that the em-
beddings

W 1,p(Ω)↪ Lp(Ω), p > d,

are compact.
Remark: These are not the only compact Sobolev embeddings, of course, and they do not only hold
on polygonal domains. You should remember the following Sobolev embeddings in dimension d ,
that hold at least for bounded Lipschitz domains:

W k,p ↪ W � ,q , as long as k − d
p
≥ � −

d
q

and k ≥ � ,

with compactness if k > � and k − d
p > � − d

q . Embedding into Hölder spaces is possible for p > d :

W k,p ↪ Ck−1,� , with 0 < � ≤ 1 −
d
p
.

which is compact for � < 1 − d
p .

Exercise 2. (3 + 2 = 5 points)

In this exercise we want to illustrate that choosing the “right” mesh heavily in�uences how
good a function can be approximated with respect to the number of degrees of freedom used
for this approximation.
Let Ω = [0, 1]. For n ∈ ℕ, we denote by n the partition of [0, 1] into n subintervals of equal
length with start- and endpoints

0 = x0 < x1 = ℎ < ... < xn−1 = 1 − ℎ < xn = 1, ℎ =
1
n
.

By n we denote the interpolation operator with piecewise linear polynomials on [0, 1] with
respect to the partition n.
Given some u ∈ H 1([0, 1]) we denote by ̂n(u) the partition of [0, 1] into n subintervals with
start- and endpoints

0 = x̂0 < x̂1 < ... < x̂n−1 < x̂n = 1

such that ∫ x̂i+1
x̂i |u′(x)|2 dx = 1

n |u|
2
H 1([0,1]) for i = 0, ..., n − 1. With ̂n(u) we denote the correspon-

ding interpolation operator with piecewise linear polynomials with respect to the partition
̂n(u).

a) Compute estimates for the interpolation errors ‖u − nu‖L∞([0,1]) and ‖u − ̂n(u)u‖L∞([0,1]).

b) Compute the mesh ̂n(u) for u(x) ∶= |x |
1
2+� , � > 0. What do you observe?
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Exercise 3. (3 + 3 + 2 = 8 points)

Let Ω ⊂ ℝd be a domain with Lipschitz boundary. Early in this lecture the Poincaré inequality

‖u‖L2(Ω) ≤ C(Ω)|u|H 1 ∀u ∈ H 1
0 (Ω) (1)

has been proven. Now we want to consider variants of this import theorem:

a) Let E ⊂ Ω have nonzero measure or let D ⊂ )Ω have nonzero measure with respect to
the surface measure ds on )Ω. Prove the following statement for p ∈ [1,∞): There exist
constants CE = CE(Ω, E, p) > 0 and CD = CD(Ω, D, p) such that

‖u‖pW 1,p(Ω) ≤ CE (|u|
p
W 1,p +

||||∫E
u dx

||||

p

) ∀u ∈ W 1,p(Ω)

and ‖u‖pW 1,p(Ω) ≤ CD (|u|pW 1,p +
||||∫D

u ds
||||

p

) ∀u ∈ W 1,p(Ω).

Hint: Assume the contrary and use a compactness argument to obtain a contradiction.

Remark: The second inequality yields a generalization of (1) for H 1
D(Ω) with homogeneous Di-

richlet boundary conditions on an arbitrary subset D of )Ω with nonzero surface measure.

b) Prove the following further variant of the Poincaré inequality: There exists a constant
C = C(Ω, p) > 0 such that

‖‖‖‖
u −

1
|Ω| ∫Ω

u dx
‖‖‖‖Lp(Ω)

≤ C |u|W 1,p ∀u ∈ W 1,p(Ω).

c) Use the results obtained above in order to prove that the following PDEs admit unique
weak solutions in H 1(Ω):

−Δu + cu = f on Ω,
)nu = 0 on )Ω

with f ∈ L2(Ω), c ∈ L∞(Ω), c ≥ 0 a.e. on Ω, but c ≢ 0, and

−Δu = f on Ω,
)nu + bu = g on )Ω,

with f ∈ L2(Ω), g ∈ L2()Ω), b ∈ L∞()Ω), b ≥ 0 ds-a.e. on )Ω, but b ≢ 0.
(Note that we do not assume positive lower bounds for c and b, as we always did before!)
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Programming exercise 1. (3 + 7 = 10 points)

A numerical walk trough the zoo of elliptic equations
In this last regular1 programming exercise we want to illustrate the convergence rates of pie-
cewise linear �nite elements for di�erent elliptic model problems.

a) Consider the 1D-example from Exercise 2 on Sheet 8. When implementing the
Expression-object for the oscillating coe�cient an choose degree=3 to ensure that
the oscillating behaviour gets captured correctly during integration.
Plot the �nite element approximation errors measured in L2-, H 1- and L∞-norms with
respect to the mesh size ℎ ∈ {5−1, 10−1, 15−1, 20−1, 25−1, 30−1, 40−1, 50−1, 75−1, 150−1, 300−1}
for di�erent choice of the oscillation frequency n ∈ {10, 15, 30}. Use the errornorm-
function of FEniCS that allows you to compute the error between a true solution (that
might by given as an Expression-object) and a �nite element solution. How can you
explain your observations?

b) For the following three PDEs we do not know an analytical solution, so we have to
compute a reference solution uref on a �ne mesh and compute error estimates of solutions
on coarser meshes with respect to this reference solution acting as exact solution. Note
that this can be done with the help of errornorm as well by specifying the �ne mesh of
the reference solution as mesh on which the norms are to compute. In order to interpolate
the coarse mesh solution to the �ne mesh of the reference solution it might be necessary
to use the following command at the beginning of your FEniCS code:

parameters["allow_extrapolation"] = True

This allows extrapolation of the coarse mesh solutions when interpolation onto the �ne
mesh requires evaluation of the coarse mesh solution outside the domain described by
the coarse mesh.
For the following PDEs plot L2- and H 1-errors with respect to the mesh size ℎ and the
number of degrees of freedom:

• Domain with and without reentrent corner
Let Ω! ∶= {(r cos �, r sin �) ∈ ℝ2∶ r ∈ [0, 1], � ∈ [!, 2�]} be the domain given by
the unit circle with a circular sector of angle ! ∈ (0, 2� ) cut out. We consider the
PDE

−Δu = 1 on Ω! ,
u = 0 on )Ω! ,

�rst, for ! = � , and second, for ! = �
4 . Can you observe a di�erence in the conver-

gence rates? Why?
Repeat the experiment with piecewise quadratic instead of piecewise linear �nite
elements. What can you observe?

• Discontinuous coe�icient
On Ω = [0, 1]2 we consider the PDE

− div(a�∇u) = 1 on Ω, (2)
u = 0 on )Ω, (3)

with coe�cient a�(x) ∶= � + �−11K for some � > 0 and K ∶= B1/3((1/2, 1/2)).
Which convergence rates do you observe? How does convergence react on chan-
ging from � = 1 to � = 10−1 or � = 10−2?

1Therefore, there are 35 programming points to reach in total and 18 programming points are su�cient for
admittance to the exam. If required, there will be a further bonus programming exercise in January.
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• Mixed boundary condition
On Ω = [0, 1]2 we consider the PDE

−Δu = 1 on Ω,
u = 0 on ΓD ∶= {x ∈ )Ω∶ x1 ≥ 1/2},

)nu = 1 on ΓN ,1 ∶= {x ∈ )Ω∶ x1 < 1/2, x2 < 1/2},
)nu = −1 on ΓN ,2 ∶= {x ∈ )Ω∶ x1 < 1/2, x2 ≥ 1/2}.

Which convergence rates do you observe?

c) (3 bonus points) On the unit circle Ω = B1(0) ⊂ ℝ2 we consider the elliptic problem

−Δu = � on Ω, (4)
u = 0 on )Ω, (5)

where � denotes the Dirac measure centered at 0. Solvability and �nite element approxi-
mation of this equation has been considered in Exercise 2 on Sheet 9. The exact solution
is given by

u(x) ∶= −
1
2�

log‖x‖2.

Plot L2- and H 1-errors of the �nite element approximation with respect to the mesh size.
Does the behaviour of L2-errors con�rm our theoretical analysis?
Utilize the PointSource-construction provided by FEniCS. When implementing an
Expression for logarithmic terms you might be required to use std::log (instead of
just log, which might produce an error) in the C++-code part.

Please submit the programming exercise til January 9, before the lecture, directly to
your tutor via Email.
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