

Scientific Computing I

(Wissenschaftliches Rechnen I)

Winter term 2019/20

Priv.-Doz. Dr. Christian Rieger Fabian Hoppe

11th exercise sheet

Submission on January 9, before the lecture

Exercise 1.

(1 + 2 + 1 + 3 + 2 = 9 points)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded domain with Lipschitz boundary. The motion of an incompressible viscous fluid with velocity field $u: \Omega \to \mathbb{R}^d$ can be modeled with the following PDE ("Stokes equation"):

$$\Delta u + \nabla p = -f \qquad \text{in } \Omega,$$

$$\operatorname{div} u = 0 \qquad \text{in } \Omega,$$

$$u = u_0 \qquad \text{on } \partial \Omega.$$
(1)

Here, $p: \Omega \to \mathbb{R}$ is the pressure density, $f: \Omega \subset \mathbb{R}^d$ is an external force and Δ denotes the componentwise Laplacian $\Delta u := (\Delta u_1, ..., \Delta u_d)^T$.

a) Assume that a strong solution (u, p) to (1) exists. Conclude that the boundary condition u_0 has to fulfill:

$$\int_{\partial\Omega} n \cdot u_0 \, \mathrm{d}s = 0$$

where $n: \partial \Omega \to \mathbb{R}^d$ is the outer normal vector field.

From now on wie consider only homogenous Dirichlet boundary conditions, i.e. $u_0 \equiv 0$. Moreover, since *p* is only determined up to a constant we additionally enforce

$$\int_{\Omega} p \, \mathrm{d}x = 0.$$

We introduce the spaces $V = H_0^1(\Omega)^d$ and $\Pi = \left\{ q \in L^2(\Omega) : \int_{\Omega} q \, dx = 0 \right\}$ and the bilinear forms

$$a(u, v) := \int_{\Omega} \operatorname{trace}[(Du)^T Dv] \, \mathrm{d}x, \qquad u, v \in V$$
$$b(v, q) := \int_{\Omega} q \operatorname{div} v \, \mathrm{d}x, \qquad v \in V, q \in \Pi,$$

where $Du = (D_j u_i)_{i,j} \in L^2(\Omega)^{d \times d}$ denotes the weak Jacobian matrix of $u \in V$. Note that the space Π is equipped with the standard $L^2(\Omega)$ -norm and V is equipped with norm

$$\|u\|_{V}^{2} := \left(\sum_{i=1}^{d} \|u_{i}\|_{H^{1}(\Omega)}^{2}\right)^{1/2}, \qquad u = (u_{1}, ..., u_{d})^{T} \in V.$$

We formulate (1) in weak form as the following saddle point problem: Find $(u, p) \in V \times \Pi$ such that it holds

$$a(u, v) + b(v, p) = F(v) \qquad \forall v \in V,$$

$$b(u, q) = 0 \qquad \forall q \in \Pi,$$
(2)

where $F \in V'$ is defined by $F(v) := \int_{\Omega} f \cdot v \, dx, v \in V$.

- **b)** Show that the bilinear form $a(\cdot, \cdot)$ is coercive on *V*.
- c) The form $b(\cdot, \cdot)$ induces an operator $B' : \Pi \to V'$ via

$$\langle v, B'q \rangle_{V,V'} := b(v,q) \quad \forall v \in V, q \in \Pi.$$

What is the meaning of B' as (weak) differential operator?

d) Prove that the saddle point formulation (2) fulfills the inf-sup-condition if and only if it holds

$$\|q\|_{L^{2}(\Omega)} \leq c_{\Omega} \|\nabla q\|_{H^{-1}(\Omega)^{d}} \qquad \forall q \in \Pi.$$
(3)

<u>Remark</u>: The latter condition, the so called Necas inequality, indeed holds in a bounded domain with Lipschitz boundary. As the next exercise shows Lipschitz continuity of the boundary is essential for this result and hence for existence of solutions to (2).

e) Consider $\Omega = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < x^2\}$ and $q(x, y) := x^{-2}$. Show that q cannot not fulfill (3).

Exercise 2.

(3 + 3 = 5 points)

For a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$ we introduce the space $H(\operatorname{div}, \Omega)$ as follows: A vector field $V \in L^2(\Omega)^d$ has weak divergence $w \in L^1_{\operatorname{loc}}(\Omega)$ if it holds:

$$\int_{\Omega} V \cdot \nabla \varphi \, \mathrm{d} x = - \int_{\Omega} w \varphi \, \mathrm{d} x \qquad \forall \varphi \in C_0^{\infty}(\Omega).$$

In the following we will write $w = \operatorname{div} V$ and define

$$H(\operatorname{div},\Omega) := \{ V \in L^2(\Omega)^d : \operatorname{div} V \in L^2(\Omega) \}$$

equipped with norm

$$\|V\|_{H(\operatorname{div})}^2 := \sum_{i=1}^d \|V_i\|_{L^2(\Omega)}^d + \|\operatorname{div} V\|_{L^2(\Omega)}.$$

It turns out that $H(\operatorname{div}, \Omega)$ is a Hilbert space and coincides with $\overline{C^{\infty}(\Omega)^d}^{\|\cdot\|_{H(\operatorname{div})}}$. For $V = H(\operatorname{div}, \Omega)$ and $\Pi = L^2(\Omega)$ we consider the saddle point problem: Find $(\sigma, u) \in V \times \Pi$ such that

$$\int_{\Omega} \sigma \cdot \tau \, \mathrm{d}x + \int_{\Omega} u \operatorname{div} \tau \, \mathrm{d}x = 0 \qquad \forall \tau \in V,$$

$$\int_{\Omega} v \operatorname{div} \sigma = -\int_{\Omega} f v \, \mathrm{d}x \qquad \forall v \in \Pi.$$
(4)

a) Show that (4) admits a unique solution.

<u>Hint</u>: For $v \in \Pi$ choose $w \in C_0^{\infty}(\Omega)$ "close" to v and define $\tau \in H(\operatorname{div}, \Omega)$ such that $\operatorname{div} \tau = w$ and $\|\tau\|_{L^2(\Omega)^d} \leq c \|\|w\|_{L^2(\Omega)^d}$.

b) Prove that for the solution $(\sigma, u) \in V \times \Pi$ of (4) it evens holds $u \in H^1(\Omega)$. Give the strong formulation of the PDE corresponding to (4).

Exercise 3.

- **a)** Let $\{\Omega_j\}_{j=1,...,J}$ be a partition of a domain Ω into piecewise smooth subdomains Ω_j , i.e. $\Omega \subset \bigcup_{j=1}^{J} \overline{\Omega_j}$ and $\Omega_j \cap \Omega_{j'} = \emptyset$ for $j \neq j'$. Show that every $V \in L^2(\Omega)^d$ such that $V_j := V|_{\Omega_j} \in C^1(\overline{\Omega_j})$ for all j = 1, ..., J is an element of $H(\operatorname{div}, \Omega)$ if it holds $n_{\partial\Omega_i} \cdot V_i = n_{\partial\Omega_j} \cdot V_j$ on $\partial\Omega_i \cap \partial\Omega_j$.
- **b)** Let \mathcal{T}_h be a triangulation of a polygonal domain $\Omega \subset \mathbb{R}^2$. We define

$$\begin{aligned} \mathsf{RT}_0 &:= \{ \varphi \in L^2(\Omega)^2 \colon \quad \varphi|_T = a_T + c_T x, \quad a_T \in \mathbb{R}^2, \, c_T \in \mathbb{R}, \quad \forall T \in \mathcal{T}_h, \\ n_e \cdot \varphi|_{T_1}(x_e) &= n_e \cdot \varphi|_{T_2}(x_e) \quad \forall \text{ edges } e = T_1 \cap T_2 \}, \end{aligned}$$

where x_e denotes the midpoint of an edge e of \mathcal{T}_h . Show that RT_0 is a subspace of $H(\operatorname{div}, \Omega)$.

Recapitulation exercises

Exercise 4.

a) Consider the function

$$u \colon \mathbb{R}^d \to \mathbb{R}, \qquad x \mapsto \log \log \frac{2}{|x|_2}.$$

For which $d \in \mathbb{N}$, $p \in (1, \infty)$ does $u \in W^{1,p}(B_1(0))$ hold?

b) Let $p, q \in [1, \infty]$, $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ and $\Omega \subset \mathbb{R}^d$. Show that it holds $uv \in W^{1,r}(\Omega)$ if $u \in W^{1,p}(\Omega)$, $v \in W^{1,q}(\Omega)$, and give a formula for the weak derivatives of uv.

Exercise 5.

(4 + 2 = 6 bonus points)

(2 + 2 = 4 bonus points)

Let $\Omega \subset \mathbb{R}^d$ be a domain with Lipschitz boundary and $f \in L^2(\partial \Omega)$ be given. For $\epsilon > 0$ we consider the following PDE in strong form:

$$-\Delta u = 0 \qquad \text{on } \Omega,$$

 $\epsilon \cdot \partial_n u + u = f \qquad \text{on } \partial\Omega.$
(5)

- a) State the weak formulation of the PDE (5), including the spaces. Prove existence of a unique solution to (5) and give an estimate of this solution in terms of f.
- **b)** Assume that there is $\varphi \in H^2(\Omega)$ such that $\Delta u = 0$ and $u|_{\partial\Omega} = f$ in the sense of traces. Show that $u = u(\epsilon)$ stays bounded in H^1 as $\epsilon \to 0$.

Merry Christmas and a Happy New Year!