

Scientific Computing I

(Wissenschaftliches Rechnen I)

Winter term 2019/20

Priv.-Doz. Dr. Christian Rieger Fabian Hoppe

12th exercise sheet

Submission on January 16, before the lecture

Exercise 1.

(2 + 3 = 5 points)

Given $A \in \mathbb{R}^{m \times m}$ symmetric and $B \in \mathbb{R}^{n \times m}$ we define

$$C := \begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \in \mathbb{R}^{(m+n) \times (m+n)}.$$

a) Fix $a \in \mathbb{R}^m$, $b \in \mathbb{R}^n$. Show that the KKT-system for the equality-constrained optimization problem

$$\min_{x\in\mathbb{R}^m}f(x) := \frac{1}{2}x^TAx - a^Tx \qquad \text{such that } Bx = b.$$

can be written as

$$C \cdot \begin{pmatrix} x \\ \lambda \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} a \\ b \end{pmatrix}$$

with some $\lambda \in \mathbb{R}^n$.

b) Assume now that rank(B) = n and that *A* is positive definite on ker(*B*).

Show that *C* is invertible and that the corresponding solution $\begin{pmatrix} x \\ \lambda \end{pmatrix}$ of the linear system from a) is a minimizer of the optimization problem.

Exercise 2.

Prove that also the following converse of the Fortin interpolation result from the lecture is true: Let *X* and *M* be Hilbert spaces and *X_h* and *M_h* be subspaces, respectively. If a bilinear form $b: X \times M \rightarrow \mathbb{R}$ fulfills the inf-sup condition both on *X*, *M* and *X_h*, *M_h* with some constant $\beta > 0$, then there exists a bounded linear projection operator $\Pi_h: X \rightarrow X_h$ such that

$$b(\upsilon - \Pi_h \upsilon, \mu_h) = 0 \qquad \forall \mu_h \in M_h$$

holds. Further, $\|\Pi_h\|_{\mathcal{L}(X)}$ does not depend on the concrete choice of X_h , M_h , but on β .

<u>Hint:</u> Construct a suitable saddle point problem. To do so choose the scalar product of *X* as the coercive bilinear form.

(5 points)

(2 + 2 + 2 + 4 = 10 points)

Exercise 3.

Recall the Stokes equation and its formulation as saddle point problem from exercise 1 of Sheet 11. We further assume that the domain $\Omega \subset \mathbb{R}^2$ is convex and polygonal. In particular, the inf-sup condition is fulfilled in that case for the infinite dimensional spaces

$$X := H_0^1(\Omega)^2, \quad M := \left\{ p \in L^2(\Omega) \colon \int_{\Omega} p \, \mathrm{d}x = 0 \right\} \subset L^2(\Omega).$$

Now, let Ω be equipped with a family \mathcal{T}_h of non-degenerate quasi-uniform triangulations. With $P_h^1 \subset H^1(\Omega)$ we denote the space of piecewise linear finite elements on \mathcal{T}_h and by $P_{h,0}^1 := P_h^1 \cap H_0^1(\Omega)$ the subspace fulfilling homogeneous Dirichlet boundary conditions. A possible discretization of the Stokes equation could be given by the choice

$$X_h := (P_{h,0}^1)^2 = (P_h^1)^2 \cap X, \quad M_h := P_h^1 \cap M.$$

However, this discretization will be unstable, i.e. the inf-sup condition does not hold uniformly on the discrete level. A possible way to overcome this problem is to enrich the space X_h by adding an additional degree of freedom to the velocity approximation: Given the three ansatz functions

$$\phi_1(x, y) = 1 - x - y, \quad \phi_2(x, y) = x, \quad \phi_3(x, y) = y$$

of P_h^1 on the reference triangle we define on the reference triangle an additional ansatz function

$$b(x, y) := 27\phi_1(x, y)\phi_2(x, y)\phi_3(x, y),$$

the so called "bubble function". The bubble space $B_{3,h}$ is defined as

$$B_{3,h} := \{ v \in C(\overline{\Omega}) \colon v|_{T} \circ a_{T} \in \operatorname{span}\{b\} \quad \forall T \in \mathcal{T}_{h} \},\$$

where $a_T \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote the affine linear transformation from the reference triangle to triangle *T*. Finally, we introduce the discrete ansatz spaces as follows:

$$X_h := (P_{h,0}^1 \oplus B_{3,h})^2, \qquad M_h := P_h^1 \cap M.$$

We show that the inf-sup condition holds on the discrete level in several steps:

a) Prove that for any $v \in H_0^1(\Omega)$ there exists a unique $v_h \in P_{h,0}^1$ fulfilling

$$\langle v_h, w_h \rangle_{H^1} = \langle v, w_h \rangle_{H^1} \qquad \forall w_h \in P_{h,0}^1$$

and that the map $\pi_h^0: H_0^1(\Omega) \to P_{h,0}^1$ defined by $v \mapsto v_h$ is continuous with respect to the $H^1(\Omega)$ -norm.

b) Utilize the Aubin-Nietzsche trick and H^2 -regularity to prove

$$\|\pi_h^0\upsilon-\upsilon\|_{L^2(\Omega)} \le Ch\|\upsilon\|_{H^1(\Omega)}.$$

c) Show that the map $\pi_h^1: L^2(\Omega) \to B_3, v \mapsto v_h$ defined by

$$\int_T (v_h - v) \, \mathrm{d}x = 0 \qquad \forall T \in \mathcal{T}_h$$

is well defined and continuous with respect to the L^2 -norm.

<u>Hint</u>: Utilize the ansatz $v_h|_T = \alpha_T(b \circ a_T^{-1})$ with $\alpha_T \in \mathbb{R}$.

d) Define the Fortin interpolation as

$$\Pi_h \upsilon := \pi_h^0 \upsilon + \pi_h^1 (\upsilon - \pi_h^0),$$

where application of π_h^0 resp. π_h^1 to $H^1(\Omega)^2$ has to be understood componentwise. Prove that this operator satisfies the required assumptions, i.e.

- (i) $b(v \Pi_h v, q_h) = \int_{\Omega} q_h \operatorname{div}(v \Pi_h v) \, \mathrm{d}x = 0 \text{ for } v \in X, q_h \in M_h,$
- (ii) $\|\Pi_h v\|_{H^1(\Omega)^2} \le C \|v\|_{H^1(\Omega)^2}$ for $v \in X$.

<u>Hint</u>: For (i) start with showing $\int_T (\Pi_h \upsilon - \upsilon) dx = 0$ for all $T \in \mathcal{T}_h$ and $\Pi_h \upsilon - \upsilon = 0$ on $\partial \Omega$. Regarding (ii) recall the inverse estimate $\|\upsilon_h\|_{H^1(\Omega)} \leq ch^{-1} \|\upsilon_h\|_{L^2(\Omega)}$ for all $\upsilon_h \in P_h^1$.

This is the last exercise sheet that counts for admission to the final exam. In total, there are 213 theory points and 35 programming points to reach and therefore **107 theory points and 18 programming points will be** *sufficient* for admission to the exam.

The 13th (and final) exercise sheet will be submitted on January 23. The solutions will be discussed in the tutorials of the last week of the semester (January 27-31).