

Scientific Computing I

(Wissenschaftliches Rechnen I)

Winter term 2019/20

Priv.-Doz. Dr. Christian Rieger Fabian Hoppe

3rd exercise sheet

Submission on October 31, before the lecture

Exercise 1.

(3 + 3 = 6 points)

Let $\Omega = (0, 1)$ and consider the bilinear form

$$a: H_0^1(\Omega) \times H_0^1(\Omega) \longrightarrow \mathbb{R}, \qquad (u,v) \mapsto \int_{\Omega} t^2 u'(t) v'(t) dt$$

resp. the linear form

$$\ell : H_0^1(\Omega) \to \mathbb{R}, \qquad v \mapsto \int_{\Omega} v(t) dt.$$

a) Show that the functional

$$J : H_0^1(\Omega) \to \mathbb{R}, \qquad u \mapsto \frac{1}{2}a(u, u) - \ell(u).$$

has infimum

$$\inf_{u\in H^1_0(\Omega)}J(u)=-\frac{1}{2}.$$

<u>Hint</u>: Show that $J(u) = \frac{1}{2} \int_0^1 ((tu'(t) + 1)^2 - 1) dt$ for all $u \in H_0^1(\Omega)$. For the construction of a infinizing sequence think about the differential equation given (in weak form) by $a(u, v) = \ell(v) \quad \forall v \in H_0^1(\Omega)$.

b) Show that *J* has no minimizer, i.e. the infimum from exercise a) is not a minimum. Explain why this does not contradict the Lax-Milgram theorem.

Exercise 2.

(3 + 3 = 6 points)

Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain. We consider the PDE

$$-\operatorname{div}(a\nabla u) + b \cdot \nabla u + u = f \qquad \text{on } \Omega,$$
$$a\partial_n u = g \qquad \text{on } \partial\Omega,$$

with $f \in L^2(\Omega)$, $g \in L^2(\partial \Omega)$, $b \in (L^{\infty}(\Omega))^d$ and $a \in L^{\infty}(\Omega)$, $a(x) \ge a_0 > 0$ a.e. on Ω .

- **a)** Derive a weak formulation of this PDE in the space $H^1(\Omega)$.
- **b)** Give a suitable (non trivial) condition on b such that there exists a unique weak solution of the PDE. Estimate the H^1 -norm of the solution in terms of the given data.

<u>Hint</u>: You may use that there is a continuous trace map tr: $H^1(\Omega) \rightarrow L^2(\partial \Omega)$ with operator norm $c_{\partial \Omega} > 0$.

Exercise 3.

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain and $a, \hat{a} \in L^{\infty}(\Omega)$ such that $0 < a_0 \leq a(x), \hat{a}(x) \leq A < \infty$ a.e. on Ω . For some $f \in H^{-1}(\Omega)$ let $u \in H_0^1(\Omega)$ the solution of the PDE

$$-\operatorname{div}(a\nabla u) = f \text{ on } \Omega, \qquad u = 0 \text{ on } \partial\Omega,$$

and $\hat{u} \in H_0^1(\Omega)$ the solution of

 $-\operatorname{div}(\hat{a}\nabla u) = f \text{ on } \Omega, \qquad u = 0 \text{ on } \partial\Omega.$

Show that it holds

$$\|u - \hat{u}\|_{H^1_0(\Omega)} \le c \|a - \hat{a}\|_{L^{\infty}}$$

with some constant c > 0 and write explicitely down this constant c for the given data.

Exercise 4.

(2 + 2 = 4 points)

Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain. We consider the following PDE, the so called *biharmonic equation*:

$$\Delta^2 u = f \qquad \text{in } \Omega,$$

$$u = 0 \qquad \text{on } \partial\Omega,$$

$$\partial_n u = 0 \qquad \text{on } \partial\Omega.$$

Here, $\partial_n u = \nabla u \cdot n$ denotes as usual the outer normal derivative of u on the boundary $\partial \Omega$ of Ω . With $\Delta^2 = \Delta \cdot \Delta$ we denote double application of the Laplacian, which is defined in its strong form on $C^4(\Omega)$.

a) Derive the corresponding weak formulation of the biharmonic equation in the space

$$H_0^2(\Omega) := \{ u \in H^2(\Omega) : u = 0 \text{ and } \partial_n u = 0 \text{ on } \partial\Omega \}.$$

b) Now we assume that Ω has a C^2 -boundary or that Ω is convex. In this case there is some $c_{\Omega} > 0$ such that $\|u\|_{H^2(\Omega)} \le c_{\Omega} \|\Delta u\|_{L^2(\Omega)}$ for every $u \in H^2_0(\Omega)$ holds.

Show that the biharmonic equation admits a unique solution $u \in H_0^2(\Omega)$ for any $f \in L^2(\Omega)$ and estimate the norm of u in terms of f.

Exercise 5.

Let $\Omega \subset \mathbb{R}^d$ be a domain.

a) Let $F \in (L^2(\Omega))^d$, i.e. *F* is a vector field on Ω with L^2 -integrable components.

Define a weak divergence $\operatorname{div}(F) \in H^{-1}(\Omega)$ that coincides with the classical (i.e. strong) notion of divergence for a smooth vector field $F \in (C^{\infty}(\Omega))^d$.

For $p \in (1, \infty)$ we denote by $W^{-1,p}(\Omega) := (W_0^{1,p'}(\Omega))^*$ the dual space of $W_0^{1,p'}(\Omega)$. Here, p' is the Hölder conjugate exponent to p, i.e. $p^{-1} + (p')^{-1} = 1$.

- **b)** Let $F \in (L^p(\Omega))^d$. Define again a weak divergence of F, div $(F) \in W^{-1,p}$. Is the map div : $(L^p(\Omega))^d \to W^{-1,p}(\Omega)$ continuous?
- **c)** Given $a \in L^{\infty}(\Omega)$, $a(x) \ge a_0 > 0$ a.e. on Ω , the weak form of the PDE

$$-\operatorname{div}(a \nabla u) = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega$$

with $f \in H^{-1}(\Omega)$ gives rise to a bounded linear map $-\operatorname{div}(a\nabla \cdot): H^{-1}_0(\Omega) \to H^{-1}(\Omega).$

- (a) Show that this map is well defined and continuous from $W_0^{1,p}(\Omega)$ to $W^{-1,p}(\Omega)$ as well for $p \in (1, \infty)$.
- (b) In which $W_0^{1,p}(\Omega)$ do you therefore have to search for a weak solution of

$$-\operatorname{div}(a\nabla u) = \delta_{x_0}$$
 in Ω , $u = 0$ on $\partial \Omega$,

if δ_{x_0} denotes the Dirac measure at some $x_0 \in \Omega$?

<u>Hint</u>: Use the Sobolev embeddings to determine those p for which $\delta_{x_0} \in W^{-1,p}(\Omega)$. To do so you can assume that Ω is bounded and Lipschitz.

<u>Note</u>: Existence of solutions in the $W_0^{1,p}$ - $W^{-1,p}$ -setting is much more difficult to prove than in the H_0^1 - H^{-1} -setting because we cannot apply Lax-Milgram!