# Scientific Computing I 

(Wissenschaftliches Rechnen I)
Winter term 2019/20
Priv.-Doz. Dr. Christian Rieger
Fabian Hoppe

## $3^{\text {rd }}$ exercise sheet

Submission on October 31, before the lecture

## Exercise 1.

Let $\Omega=(0,1)$ and consider the bilinear form

$$
a: H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}, \quad(u, v) \mapsto \int_{\Omega} t^{2} u^{\prime}(t) v^{\prime}(t) d t
$$

resp. the linear form

$$
\ell: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}, \quad v \mapsto \int_{\Omega} v(t) d t
$$

a) Show that the functional

$$
J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}, \quad u \mapsto \frac{1}{2} a(u, u)-\ell(u)
$$

has infimum

$$
\inf _{u \in H_{0}^{1}(\Omega)} J(u)=-\frac{1}{2}
$$

Hint: Show that $J(u)=\frac{1}{2} \int_{0}^{1}\left(\left(t u^{\prime}(t)+1\right)^{2}-1\right) d t$ for all $u \in H_{0}^{1}(\Omega)$. For the construction of a infimizing sequence think about the differential equation given (in weak form) by $a(u, v)=$ $\ell(v) \quad \forall v \in H_{0}^{1}(\Omega)$.
b) Show that $J$ has no minimizer, i.e. the infimum from exercise a) is not a minimum. Explain why this does not contradict the Lax-Milgram theorem.

## Exercise 2.

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain. We consider the PDE

$$
\begin{array}{rlrl}
-\operatorname{div}(a \nabla u)+b \cdot \nabla u+u & =f & & \text { on } \Omega, \\
a \partial_{n} u=g & & \text { on } \partial \Omega,
\end{array}
$$

with $f \in L^{2}(\Omega), g \in L^{2}(\partial \Omega), b \in\left(L^{\infty}(\Omega)\right)^{d}$ and $a \in L^{\infty}(\Omega), a(x) \geq a_{0}>0$ a.e. on $\Omega$.
a) Derive a weak formulation of this PDE in the space $H^{1}(\Omega)$.
b) Give a suitable (non trivial) condition on $b$ such that there exists a unique weak solution of the PDE. Estimate the $H^{1}$-norm of the solution in terms of the given data.

Hint: You may use that there is a continuous trace map $\operatorname{tr}: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ with operator norm $c_{\partial \Omega}>0$.

## Exercise 3.

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain and $a, \hat{a} \in L^{\infty}(\Omega)$ such that $0<a_{0} \leq a(x), \hat{a}(x) \leq A<\infty$ a.e. on $\Omega$. For some $f \in H^{-1}(\Omega)$ let $u \in H_{0}^{1}(\Omega)$ the solution of the PDE

$$
-\operatorname{div}(a \nabla u)=f \text { on } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

and $\hat{u} \in H_{0}^{1}(\Omega)$ the solution of

$$
-\operatorname{div}(\hat{a} \nabla u)=f \text { on } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Show that it holds

$$
\|u-\hat{u}\|_{H_{0}^{1}(\Omega)} \leq c\|a-\hat{a}\|_{L^{\infty}}
$$

with some constant $c>0$ and write explicitely down this constant $c$ for the given data.

## Exercise 4.

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain. We consider the following PDE, the so called biharmonic equation:

$$
\begin{array}{rlrl}
\Delta^{2} u & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega, \\
\partial_{n} u=0 & & \text { on } \partial \Omega .
\end{array}
$$

Here, $\partial_{n} u=\nabla u \cdot n$ denotes as usual the outer normal derivative of $u$ on the boundary $\partial \Omega$ of $\Omega$. With $\Delta^{2}=\Delta \cdot \Delta$ we denote double application of the Laplacian, which is defined in its strong form on $C^{4}(\Omega)$.
a) Derive the corresponding weak formulation of the biharmonic equation in the space

$$
H_{0}^{2}(\Omega):=\left\{u \in H^{2}(\Omega): u=0 \text { and } \partial_{n} u=0 \text { on } \partial \Omega\right\} .
$$

b) Now we assume that $\Omega$ has a $C^{2}$-boundary or that $\Omega$ is convex. In this case there is some $c_{\Omega}>0$ such that $\|u\|_{H^{2}(\Omega)} \leq c_{\Omega}\|\Delta u\|_{L^{2}(\Omega)}$ for every $u \in H_{0}^{2}(\Omega)$ holds.
Show that the biharmonic equation admits a unique solution $u \in H_{0}^{2}(\Omega)$ for any $f \in L^{2}(\Omega)$ and estimate the norm of $u$ in terms of $f$.

## Exercise 5.

Let $\Omega \subset \mathbb{R}^{d}$ be a domain.
a) Let $F \in\left(L^{2}(\Omega)\right)^{d}$, i.e. $F$ is a vector field on $\Omega$ with $L^{2}$-integrable components.

Define a weak divergence $\operatorname{div}(F) \in H^{-1}(\Omega)$ that coincides with the classical (i.e. strong) notion of divergence for a smooth vector field $F \in\left(C^{\infty}(\Omega)\right)^{d}$.

For $p \in(1, \infty)$ we denote by $W^{-1, p}(\Omega):=\left(W_{0}^{1, p^{\prime}}(\Omega)\right)^{*}$ the dual space of $W_{0}^{1, p^{\prime}}(\Omega)$. Here, $p^{\prime}$ is the Hölder conjugate exponent to $p$, i.e. $p^{-1}+\left(p^{\prime}\right)^{-1}=1$.
b) Let $F \in\left(L^{p}(\Omega)\right)^{d}$. Define again a weak divergence of $F, \operatorname{div}(F) \in W^{-1, p}$. Is the map $\operatorname{div}:\left(L^{p}(\Omega)\right)^{d} \rightarrow W^{-1, p}(\Omega)$ continuous?
c) Given $a \in L^{\infty}(\Omega), a(x) \geq a_{0}>0$ a.e. on $\Omega$, the weak form of the PDE

$$
-\operatorname{div}(a \nabla u)=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

with $f \in H^{-1}(\Omega)$ gives rise to a bounded linear map $-\operatorname{div}(a \nabla \cdot): H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$.
(a) Show that this map is well defined and continuous from $W_{0}^{1, p}(\Omega)$ to $W^{-1, p}(\Omega)$ as well for $p \in(1, \infty)$.
(b) In which $W_{0}^{1, p}(\Omega)$ do you therefore have to search for a weak solution of

$$
-\operatorname{div}(a \nabla u)=\delta_{x_{0}} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

if $\delta_{x_{0}}$ denotes the Dirac measure at some $x_{0} \in \Omega$ ?
Hint: Use the Sobolev embeddings to determine those $p$ for which $\delta_{x_{0}} \in W^{-1, p}(\Omega)$. To do so you can assume that $\Omega$ is bounded and Lipschitz.

Note: Existence of solutions in the $W_{0}^{1, p}-W^{-1, p}$-setting is much more difficult to prove than in the $H_{0}^{1}-H^{-1}$-setting because we cannot apply Lax-Milgram!

