

Scientific Computing I

(Wissenschaftliches Rechnen I)

Winter term 2019/20

Priv.-Doz. Dr. Christian Rieger Fabian Hoppe

8th exercise sheet

Submission on December 12, before the lecture

Exercise 1.

(2 + 3 = 5 points)

"Three appetizers on H²-regularity"

a) Let $\Omega = [0, 1]$ and $f \in L^2(\Omega)$. Prove that the weak solution $u \in H_0^1(\Omega)$ of the Laplace equation with homogeneous Dirichlet boundary conditions

$$-u'' = f$$
 on Ω , $u(0) = u(1) = 0$,

fulfills $u \in H^2(\Omega)$.

b) Let $\Omega \subset \mathbb{R}^d$ be a convex domain. It is a well-known fact that the Laplace equation with homogeneous Dirichlet boundary conditions

$$-\Delta u = f$$
 on Ω , $u = 0$ on $\partial \Omega$

admits a unique solution $u \in H^2(\Omega) \cap H^1_0(\Omega)$ such that $|u|_{H^2(\Omega)} \leq c_{\Omega} ||f||_{L^2(\Omega)}$ with some constant $c_{\Omega} > 0$. In particular, the map

$$-\Delta \colon H^2(\Omega) \cap H^1_0(\Omega) \longrightarrow L^2(\Omega), \tag{1}$$

is an isomorphism.

Now, let $a \in C^{1,0}(\overline{\Omega})$ such that $0 < a_0 \le a(x) \le a_1 < +\infty$ holds for all $x \in \overline{\Omega}$. Show that the PDE

 $-\operatorname{div}(a\nabla u) = f$ on Ω , u = 0 on $\partial\Omega$,

admits a unique solution $u \in H^2(\Omega) \cap H^1_0(\Omega)$ for every $f \in L^2(\Omega)$ and estimate its norm in terms of f and a.

<u>Hint</u>: Use the theory of Fredholm operators. To do so utilize the fact that $-\operatorname{div}(a\nabla u) = -a\Delta u - \nabla a\nabla u$ for $u \in H^2(\Omega)$ and the compactness of the embedding $H^1(\Omega) \hookrightarrow_c L^2(\Omega)$.

c) (2 bonus points) Let $\Omega = [-1, 1]$ and $K = [-\frac{1}{2}, \frac{1}{2}] \subset \Omega$. We define $a(x) = 1 + \mathbf{1}_K(x)$ and consider the weak solution $u \in H_0^1(\Omega)$ to the equation

$$-\operatorname{div}(a\nabla u) = 1$$
 on Ω , $u = 0$ on $\partial\Omega$.

Show that $u \notin H^2(\hat{\Omega})$ for an open neighbourhood $\hat{\Omega}$ of *K*.

<u>Remark</u>: This shows that even interior regularity might fail in case of non-Lipschitz coefficients. Utilizing polar coordinates and radially symmetric functions this example can be extended to higher dimensions as well.

Exercise 2.

(2 + 2 + 3 = 7 points)

Let $\Omega \subset \mathbb{R}^d$, d = 2, 3, be a convex domain. Given a regular Borel measure $\mu \in C(\overline{\Omega})^*$ we consider the equation

$$-\Delta u = \mu \quad \text{on } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega, \tag{2}$$

that has to be understood in the following so-called *very weak* sense: Find $u \in L^2(\Omega)$ such that

$$-\int_{\Omega} u\Delta v \, \mathrm{d}x = \int_{\Omega} v \, \mathrm{d}\mu \qquad \forall v \in H^{2}(\Omega) \cap H^{1}_{0}(\Omega).$$
(3)

This very weak formulation is necessary, because $\mu \notin H^{-1}(\Omega)$, in general, and hence we cannot apply Lax-Milgram.

a) Show that there exists a unique solution $u \in L^2(\Omega)$ of (2) in the very weak sense (3) and estimate the norm of u in terms of μ .

<u>Hint</u>: As in exercise 1b you may use the H^2 -regularity of the Laplace problem. Consider the adjoint of the inverse of the map (1) and use the embedding $H^2(\Omega) \hookrightarrow C(\overline{\Omega})$.

Now, let Ω be additionally polygonal and equipped with a family of non-degenerate quasiuniform triangulations \mathcal{T}_h . Let $V_h \subset H_0^1(\Omega)$ be the space of piecewise linear finite elements on this triangulation with homogeneous Dirichlet boundary condition.

b) Let $z \in H^2(\Omega) \cap H^1_0(\Omega)$ and let $z_h \in V_h$ be the solution of the discrete variational problem

$$\int_{\Omega} \nabla v_h \nabla z_h \, \mathrm{d}x = \int_{\Omega} \nabla v_h \nabla z \, \mathrm{d}x \qquad \forall v_h \in V_h.$$

Show that there is c > 0 independent of h and z such that

$$|z - z_h|_{L^{\infty}(\Omega)} \le ch^{2-\frac{u}{2}} ||z||_{H^2(\Omega)}.$$

Hint: Exercise 4 from sheet 8.

c) Finally, conclude that the solution $u_h \in V_h$ of the discrete variational problem

$$\int_{\Omega} \nabla u_h \nabla v_h \, \mathrm{d}x = \int_{\Omega} v_h \, \mathrm{d}\mu \qquad \forall v_h \in V_h$$

satisfies the error estimate

$$\|u - u_h\|_{L^2(\Omega)} \le ch^{2-\frac{d}{2}} \|\mu\|_{C(\overline{\Omega})^*}$$

with some c > 0 independent of μ and h.

<u>Hint</u>: Apply the Aubin-Nietzsche trick. Try to estimate $\int_{\Omega} (u - u_h) p \, dx$ for an arbitrary $p \in L^2(\Omega)$.

(2 + 2 + 2 = 6 points)

Exercise 3.

Let $\Omega \subset \mathbb{R}^d$ be a convex domain with Lipschitz boundary. We consider the subspace

$$V := \left\{ u \in H^1(\Omega) \colon \int_{\Omega} u \, \mathrm{d}x = 0 \right\} \subset H^1(\Omega).$$

equipped with the H^1 -norm.

- a) Show that the bilinear form $a(u, v) := \int_{\Omega} \nabla u \nabla v \, dx$ is coercive on V (w.r.t. H^1 -norm).
- **b)** Show that for any $f \in L^2(\Omega)$, $g \in L^2(\partial \Omega)$, there exists a unique $u \in V$ that fulfills

$$a(u, v) \stackrel{!}{=} F(v) \quad \forall v \in V,$$

with $F(v) := \int_{\Omega} f v \, dx + \int_{\partial \Omega} g v \, ds$. Estimate the norm of *u* in terms of *f*

c) We call $u \in H^1(\Omega)$ a weak solution of the so-called *pure Neumann problem*

$$-\Delta u = f \quad \text{on } \Omega, \qquad \partial_n u = g \quad \text{on } \partial\Omega, \tag{4}$$

if it holds

$$a(u, v) = F(v) \quad \forall v \in H^1(\Omega)$$

[Make sure that you understand why this is the correct weak formulation!]

Show that the $u \in V$ from b) is a weak solution of (4) if and only if the following compatibility condition is fulfilled:

$$\int_{\Omega} f \, \mathrm{d}x + \int_{\partial \Omega} g \, \mathrm{d}s = 0$$

Exercise 4.

(2 points)

Let $\Omega \subset \mathbb{R}^d$ be a domain with Lipschitz boundary and $A \in L^{\infty}(\Omega)^{d \times d}$, $b \in L^{\infty}(\Omega)^d$, $c \in L^{\infty}(\Omega)$. We consider the linear operator $T: H_0^1(\Omega) \to H^{-1}(\Omega)$ defined (in weak form) by

$$\langle Tu, v \rangle_{H^{-1}, H_0^1} := \int_{\Omega} \left((A \nabla u)^T \nabla v + b^T \nabla u v + c u v \right) \, \mathrm{d}x$$

The strong formulation of this operator reads as

$$Tu = -\operatorname{div}(A\nabla u) + b\nabla u + cu,$$

which is of course completely formal (unless the entries of *A* are sufficient regular) and therefore has to be understood in the weak sense in general. When applying duality arguments, e.g. the Aubin-Nietzsche trick, one has to consider a PDE associated with the adjoint operator T^* : $H_0^1(\Omega) = (H^{-1}(\Omega))^* \rightarrow H^{-1}(\Omega) = (H_0^1(\Omega))^*$.

Find a strong formulation for this adjoint operator T^* (i.e. in terms of ∇ , div etc.) similiar to the strong form given for T above.