Scientific Computing I

(Wissenschaftliches Rechnen I)
Winter term 2019/20
Priv.-Doz. Dr. Christian Rieger
Fabian Hoppe

$8^{\text {th }}$ exercise sheet

Submission on December 12, before the lecture

Exercise 1.

"Three appetizers on H^{2}-regularity"
a) Let $\Omega=[0,1]$ and $f \in L^{2}(\Omega)$. Prove that the weak solution $u \in H_{0}^{1}(\Omega)$ of the Laplace equation with homogeneous Dirichlet boundary conditions

$$
-u^{\prime \prime}=f \quad \text { on } \Omega, \quad u(0)=u(1)=0,
$$

fulfills $u \in H^{2}(\Omega)$.
b) Let $\Omega \subset \mathbb{R}^{d}$ be a convex domain. It is a well-known fact that the Laplace equation with homogeneous Dirichlet boundary conditions

$$
-\Delta u=f \quad \text { on } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

admits a unique solution $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ such that $|u|_{H^{2}(\Omega)} \leq c_{\Omega}\|f\|_{L^{2}(\Omega)}$ with some constant $c_{\Omega}>0$. In particular, the map

$$
\begin{equation*}
-\Delta: H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega) \tag{1}
\end{equation*}
$$

is an isomorphism.
Now, let $a \in C^{1,0}(\bar{\Omega})$ such that $0<a_{0} \leq a(x) \leq a_{1}<+\infty$ holds for all $x \in \bar{\Omega}$. Show that the PDE

$$
-\operatorname{div}(a \nabla u)=f \quad \text { on } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

admits a unique solution $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for every $f \in L^{2}(\Omega)$ and estimate its norm in terms of f and a.

Hint: Use the theory of Fredholm operators. To do so utilize the fact that $-\operatorname{div}(a \nabla u)=-a \Delta u-\nabla a \nabla u$ for $u \in H^{2}(\Omega)$ and the compactness of the embedding $H^{1}(\Omega) \hookrightarrow_{c} L^{2}(\Omega)$.
c) (2 bonus points) Let $\Omega=[-1,1]$ and $K=[-1 / 2,1 / 2] \subset \Omega$. We define $a(x)=1+\mathbf{1}_{K}(x)$ and consider the weak solution $u \in H_{0}^{1}(\Omega)$ to the equation

$$
-\operatorname{div}(a \nabla u)=1 \quad \text { on } \Omega, \quad u=0 \quad \text { on } \partial \Omega .
$$

Show that $u \notin H^{2}(\hat{\Omega})$ for an open neighbourhood $\hat{\Omega}$ of K.
Remark: This shows that even interior regularity might fail in case of non-Lipschitz coefficients. Utilizing polar coordinates and radially symmetric functions this example can be extended to higher dimensions as well.

Exercise 2.

Let $\Omega \subset \mathbb{R}^{d}, d=2$, 3, be a convex domain. Given a regular Borel measure $\mu \in C(\bar{\Omega})^{*}$ we consider the equation

$$
\begin{equation*}
-\Delta u=\mu \quad \text { on } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{2}
\end{equation*}
$$

that has to be understood in the following so-called very weak sense: Find $u \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
-\int_{\Omega} u \Delta v \mathrm{~d} x=\int_{\Omega} v \mathrm{~d} \mu \quad \forall v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{3}
\end{equation*}
$$

This very weak formulation is necessary, because $\mu \notin H^{-1}(\Omega)$, in general, and hence we cannot apply Lax-Milgram.
a) Show that there exists a unique solution $u \in L^{2}(\Omega)$ of (2) in the very weak sense (3) and estimate the norm of u in terms of μ.
Hint: As in exercise 1b you may use the H^{2}-regularity of the Laplace problem. Consider the adjoint of the inverse of the map (1) and use the embedding $H^{2}(\Omega) \hookrightarrow C(\bar{\Omega})$.

Now, let Ω be additionally polygonal and equipped with a family of non-degenerate quasiuniform triangulations \mathcal{J}_{h}. Let $V_{h} \subset H_{0}^{1}(\Omega)$ be the space of piecewise linear finite elements on this triangulation with homogeneous Dirichlet boundary condition.
b) Let $z \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and let $z_{h} \in V_{h}$ be the solution of the discrete variational problem

$$
\int_{\Omega} \nabla v_{h} \nabla z_{h} \mathrm{~d} x=\int_{\Omega} \nabla v_{h} \nabla z \mathrm{~d} x \quad \forall v_{h} \in V_{h}
$$

Show that there is $c>0$ independent of h and z such that

$$
\left\|z-z_{h}\right\|_{L^{\infty}(\Omega)} \leq c h^{2-\frac{d}{2}}\|z\|_{H^{2}(\Omega)} .
$$

Hint: Exercise 4 from sheet 8.
c) Finally, conclude that the solution $u_{h} \in V_{h}$ of the discrete variational problem

$$
\int_{\Omega} \nabla u_{h} \nabla v_{h} \mathrm{~d} x=\int_{\Omega} v_{h} \mathrm{~d} \mu \quad \forall v_{h} \in V_{h}
$$

satisfies the error estimate

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq c h^{2-\frac{d}{2}}\|\mu\|_{C(\bar{\Omega})^{*}}
$$

with some $c>0$ independent of μ and h.
Hint: Apply the Aubin-Nietzsche trick. Try to estimate $\int_{\Omega}\left(u-u_{h}\right) p \mathrm{~d} x$ for an arbitrary $p \in L^{2}(\Omega)$.

Exercise 3.

Let $\Omega \subset \mathbb{R}^{d}$ be a convex domain with Lipschitz boundary. We consider the subspace

$$
V:=\left\{u \in H^{1}(\Omega): \int_{\Omega} u \mathrm{~d} x=0\right\} \subset H^{1}(\Omega) .
$$

equipped with the H^{1}-norm.
a) Show that the bilinear form $a(u, v):=\int_{\Omega} \nabla u \nabla v \mathrm{~d} x$ is coercive on V (w.r.t. H^{1}-norm).
b) Show that for any $f \in L^{2}(\Omega), g \in L^{2}(\partial \Omega)$, there exists a unique $u \in V$ that fulfills

$$
a(u, v) \stackrel{!}{=} F(v) \quad \forall v \in V,
$$

with $F(v):=\int_{\Omega} f v \mathrm{~d} x+\int_{\partial \Omega} g v \mathrm{~d}$. Estimate the norm of u in terms of f
c) We call $u \in H^{1}(\Omega)$ a weak solution of the so-called pure Neumann problem

$$
\begin{equation*}
-\Delta u=f \quad \text { on } \Omega, \quad \partial_{n} u=g \quad \text { on } \partial \Omega, \tag{4}
\end{equation*}
$$

if it holds

$$
a(u, v)=F(v) \quad \forall v \in H^{1}(\Omega) .
$$

[Make sure that you understand why this is the correct weak formulation!]
Show that the $u \in V$ from b) is a weak solution of (4) if and only if the following compatibility condition is fulfilled:

$$
\int_{\Omega} f \mathrm{~d} x+\int_{\partial \Omega} g \mathrm{~d} s=0 .
$$

Exercise 4

Let $\Omega \subset \mathbb{R}^{d}$ be a domain with Lipschitz boundary and $A \in L^{\infty}(\Omega)^{d \times d}, b \in L^{\infty}(\Omega)^{d}, c \in L^{\infty}(\Omega)$. We consider the linear operator $T: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ defined (in weak form) by

$$
\langle T u, v\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega}\left((A \nabla u)^{T} \nabla v+b^{T} \nabla u v+c u v\right) \mathrm{d} x .
$$

The strong formulation of this operator reads as

$$
T u=-\operatorname{div}(A \nabla u)+b \nabla u+c u,
$$

which is of course completely formal (unless the entries of A are sufficient regular) and therefore has to be understood in the weak sense in general. When applying duality arguments, e.g. the Aubin-Nietzsche trick, one has to consider a PDE associated with the adjoint operator $T^{*}: H_{0}^{1}(\Omega)=\left(H^{-1}(\Omega)\right)^{*} \rightarrow H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{*}$.
Find a strong formulation for this adjoint operator T^{*} (i.e. in terms of ∇, div etc.) similiar to the strong form given for T above.

