

Scientific Computing I

(Wissenschaftliches Rechnen I)

Winter term 2019/20

Priv.-Doz. Dr. Christian Rieger Fabian Hoppe

Excercise sheet

for the tutorials of the week October 14-18

Excercise 1. (*L*^{*p*}-spaces)

Recall that on a Hilbert space H the parallelogramm identity

$$\|u + v\|_{H}^{2} + \|u - v\|_{H}^{2} = 2\left(\|u\|_{H}^{2} + \|v\|_{H}^{2}\right) \qquad \forall u, v \in H$$

holds.

- a) Conclude that L^p(ℝⁿ), p ∈ [1,∞], is a Hilbert space if and only if p = 2, i.e. show that for p ∈ [1,∞] \ {2} the L^p-norm cannot be induced by a scalar product.
- **b)** It is well known that for $1 \le p \le q \le \infty$ there is a constant $C_{qp} > 0$ such that $\|\varphi\|_{L^p} \le C_{pq} \|\varphi\|_{L^q}$ for all $\varphi \in L^q(\mathbb{R}^n)$, i.e. $L^q(\mathbb{R}^n)$ embeds continuously into $L^p(\mathbb{R}^n)$.

Now, find a bound for $\|\varphi\|_{L^q}$ in terms of $\|\varphi\|_{L^p}$ and M for those $\varphi \in L^{\infty}(\mathbb{R}^n)$ with $\|\varphi\|_{L^{\infty}} \leq M$.¹

Excercise 2. (H_0^1 -product)

On the space of continuously differentiable function with homogenous boundary conditions $C_0^1([0, 1]) := \{ u \in C^1([0, 1]) : u(0) = u(1) = 0 \}$ we define the so called H_0^1 -inner product

$$\langle u, v \rangle_{H^1_0} := \int_0^1 u'(t)v'(t)dt.$$

- a) Verify that ⟨·, ·⟩_{H₀¹} indeed defines a scalar product, i.e. a symmetric, positive definite bilinearform on C₀¹([0, 1]).
- **b)** Show that $(C_0^1([0,1]), \langle \cdot, \cdot \rangle_{H_0^1})$ is not a Hilbert space nevertheless.

<u>Hint</u>: It may help to show that $\|\cdot\|_{C^0} \leq \|\cdot\|_{H_0^1}$, i.e. a Cauchy sequence w.r.t. the H_0^1 -norm is in particular a Cauchy sequence in $C^0([0, 1])$.

¹Note the following useful consequence: Any uniformly bounded sequence of functions that converges in L^p for some p, already converges in L^p for all p!

Excercise 3. (Weak and strong convergence)

- **a)** Let *H* be a Hilbert space and $(u_n)_n \subset H$, $(v_n)_n \subset H$ sequences such that $u_n \to u$ (strongly) and $v_n \to v$ (weakly) as $n \to \infty$. Show that it follows $\langle u_n, v_n \rangle_H \to \langle u, v \rangle_H$ as $n \to \infty$.
- **b)** Does the statement of excercise 2a) stay true if $(u_n)_n$ converges only weakly to *u*?
- c) Let $(\varphi_n)_n \subset L^p(\mathbb{R}^n)$, $p \in (1, \infty)$, such that $\varphi_n \ge 0$ almost everywhere on \mathbb{R}^n for every $n \in \mathbb{N}$. Show that $\varphi_n \longrightarrow \varphi$ as $n \longrightarrow \infty$ implies that $\varphi \ge 0$ almost everywhere on \mathbb{R}^n .

Excercise 4. (Spectral theory in infinite dimension)

- a) Let $w \in L^{\infty}([0,1])$. Define $T_w : L^2([0,1]) \to L^2([0,1])$ by $(T_w \varphi)(t) := w(t)\varphi(t)$ for $\varphi \in L^2([0,1])$. Show that T_w is a continuous linear operator and determine its operator norm.
- **b)** Determine the spectrum of T_w for $w \in C([0, 1])$. Which elements of the spectrum are eigenvalues?

<u>Recall</u>: If X is a Banach space and $T \in \mathcal{L}(X)$ a bounded linear operator on X, we define the spectrum $\sigma(T)$ of T as

 $\sigma(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is } \underline{\text{not}} \text{ an isomorphism from } X \text{ to } X\},\$

and $\lambda \in \sigma(T)$ is called eigenvalue of *T*, if ker $\lambda I - T \neq \{0\}$.

c) Let $T : H \to H$ be a continuous linear operator on a Hilbert space H such that

$$\langle Tu, u \rangle_H > 0 \qquad \forall u \in H \setminus \{0\},$$

i.e. *T* is positive definite. Is it always true that there exists a c > 0 such that $\langle Tu, u \rangle_H \ge c \|u\|_H^2$ holds for all $u \in H$, i.e. *T* is coercive?