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Exercise 1. (Oscillations of crystals - Wave equation)
(0 Points)

In this exercise we want to model the oscillations happening inside of crystals. Ultimately,
this will lead us to the wave equation.
A crystal is made out of atoms, and these atoms are positioned in a grid-like structure.
Ideally, the distance between two neighboring atoms is equal everywhere in the structure.
Oscillatory states of the atoms may be induced as a result of external stimuli. We will first
consider a one-dimensional crystalline structure that consists of n points having a mass
m each, that are located in a row. Neighboring mass points are connected via elastic
springs having spring-constant DD, meaning that the change in energy is proportional
(with proportionality constant D) to the change in distance between the points connected
by the spring,

AF = DAx. (1)

By z;(t) we denote the deflection (vertical displacement) of mass point 7 at time t. The
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force acting on x;, Fj, is given by
Fi=F i+ F; 1, (2)
where F; ;41 is the force that z;1; exerts on x;, which according to (1) amounts to
Fiit1 = D(wix1 — 35). (3)

a) Let v;(t) = %xi(t) be the velocity of mass point i. Use Newton’s law,

d
Force = a(mass - velocity), (4)
to derive the relation
d? 9
Vi=2,...,n—1 @xz = wj(Tit1 — 2m; + xi_1), (5)
with wg = %.



b)

Suppose that the deflection for the first and last mass points are given as
21(t) = 2o(t)y  alt) = Tao(t), 0. (6)

Denote by a the distance between two consecutive mass points. Since there are many
atoms are located in the crystalline structure, we strive to make the transitions a — 0
and n — oo, while the total length of the sample structure L = na remains constant.
By passing to the limits, we can represent the deflection of any point z from the
crystalline structure at rest by a deflection function u via

x;(t) = u(z,t), where z = ia. (7)

Rewrite the differential equation obtained from a) so that it applies to the deflection
function u. Then, perform a Taylor expansion of order 2 of u(x + a,t) for any (z,t)
in the first argument. Insert the Taylor expansion into (5).

Finally, pass to the limit of the longitudinal distance parameter, a — 0, to obtain the
well-known wave equation
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@u(g;,t) = c2—u(a:,t), (8)

V(z,t) € (0,L) x (0,00) : 02

Identify an expression for ¢ and show that, ignoring the boundary conditions, a solu-
tion is given by

u(z,t) = y(&(ct — z)) (9)
for any sufficiently differentiable univariate function y = y(q).

Find a non-trivial solution for the homogeneous boundary conditions u(0,t) =
u(L,t) = 0.

In reality, a rectangular piece of matter is made up of many parallel such systems
replicated, say every distance b, in the y and z dimensions. The mass of one particle
is thus related to the material density p,

m = ab’p. (10)

For a block of material pulled parallel to the x direction we find experimentally that
a displacement u(z) prompts an elastic force per perpendicular area scaled by the
elasticity modulus g,

ou DAu Da
F = — h = = —. 11
HaTea o thus —p1 areaAu/a b2 (11)

For example, we measure:

material p/ % w/ %
rubber 1060 4106
steel 8050 2.101

saphhire 3980 345 -10°

Express ¢ (aka. the speed of sound) by invariant physical constants and compute it
for each of the materials tabulated above.



Exercise 2. (Green’s identities)
(6 Points)

Recall the divergence theorem:
Let © C R¢ be an open and bounded subset with smooth boundary 0D. For a conti-
nuously differentiable vector field F': Q — R?, it holds

/ div F(z)dzx = F(z) -n(z)ds,
Q i)

where n(x) is the outer normal vector.
Use the divergence theorem to show the following identities for u,v € C%(D):

a) [oAu(z)dz = [, Vu(z) - n(z)ds
b) Jqv(@)Au(z)dz + [ Vu(z) - Vo(z)de = [, v(x)Vu(z) -n(z)ds
¢) Jolu(z)Av(z) —v(z)Au(z))dz = [, (u(z)Vo(z) — vVu(z)) - n(z)ds

Exercise 3. (Rotational symmetry)
(6 Points)

Let Q be a domain in R? with d > 1 and let S be a linear orthogonal coordinate
transformation on R?, i.e., ST.S = I. Show that v := (u o S) satisfies

—Av=—-A(uoS)=0

provided that u : Q — R solves —Au = 0 on (2.



