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Exercise 1. (Oscillations of crystals - Wave equation)

(0 Points)

In this exercise we want to model the oscillations happening inside of crystals. Ultimately,
this will lead us to the wave equation.
A crystal is made out of atoms, and these atoms are positioned in a grid-like structure.
Ideally, the distance between two neighboring atoms is equal everywhere in the structure.
Oscillatory states of the atoms may be induced as a result of external stimuli. We will first
consider a one-dimensional crystalline structure that consists of n points having a mass
m each, that are located in a row. Neighboring mass points are connected via elastic
springs having spring-constant D, meaning that the change in energy is proportional
(with proportionality constantD) to the change in distance between the points connected
by the spring,

∆F = D∆x. (1)

By xi(t) we denote the deflection (vertical displacement) of mass point i at time t. The

x1 x2 x3 ... xn

Initial state t = 0

x1 x2 x3 ... xn

Deflected state t > 0

force acting on xi, Fi, is given by

Fi = Fi,i+1 + Fi,i−1, (2)

where Fi,i±1 is the force that xi±1 exerts on xi, which according to (1) amounts to

Fi,i±1 = D(xi±1 − xi). (3)

a) Let vi(t) = d
dtxi(t) be the velocity of mass point i. Use Newton’s law,

Force =
d

dt
(mass · velocity), (4)

to derive the relation

∀i = 2, . . . , n− 1 :
d2

dt2
xi = ω2

0(xi+1 − 2xi + xi−1), (5)

with ω2
0 = D

m .
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b) Suppose that the deflection for the first and last mass points are given as

x1(t) = x1,0(t), xn(t) = xn,0(t), t ≥ 0. (6)

Denote by a the distance between two consecutive mass points. Since there are many
atoms are located in the crystalline structure, we strive to make the transitions a→ 0
and n→∞, while the total length of the sample structure L = na remains constant.
By passing to the limits, we can represent the deflection of any point x from the
crystalline structure at rest by a deflection function u via

xi(t) = u(x, t), where x = ia. (7)

Rewrite the differential equation obtained from a) so that it applies to the deflection
function u. Then, perform a Taylor expansion of order 2 of u(x ± a, t) for any (x, t)
in the first argument. Insert the Taylor expansion into (5).

c) Finally, pass to the limit of the longitudinal distance parameter, a→ 0, to obtain the
well-known wave equation

∀(x, t) ∈ (0, L)× (0,∞) :
∂2

∂t2
u(x, t) = c2 ∂

2

∂x2
u(x, t), (8)

Identify an expression for c and show that, ignoring the boundary conditions, a solu-
tion is given by

u(x, t) = y(±(ct− x)) (9)

for any sufficiently differentiable univariate function y = y(q).

Find a non-trivial solution for the homogeneous boundary conditions u(0, t) =
u(L, t) = 0.

d) In reality, a rectangular piece of matter is made up of many parallel such systems
replicated, say every distance b, in the y and z dimensions. The mass of one particle
is thus related to the material density ρ,

m = ab2ρ. (10)

For a block of material pulled parallel to the x direction we find experimentally that
a displacement u(x) prompts an elastic force per perpendicular area scaled by the
elasticity modulus µ,

F = µ area
∂u

∂x
, thus µ =

D∆u

area ∆u/a
=
Da

b2
. (11)

For example, we measure:

material ρ/ kg
m3 µ/ N

m2

rubber 1060 4 · 106

steel 8050 2 · 1011

saphhire 3980 345 · 109

Express c (aka. the speed of sound) by invariant physical constants and compute it
for each of the materials tabulated above.
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Exercise 2. (Green’s identities)

(6 Points)

Recall the divergence theorem:
Let Ω ⊂ Rd be an open and bounded subset with smooth boundary ∂D. For a conti-
nuously differentiable vector field F : Ω→ Rd, it holds∫

Ω
divF (x) dx =

∫
∂Ω
F (x) · n(x) ds ,

where n(x) is the outer normal vector.

Use the divergence theorem to show the following identities for u, v ∈ C2(D):

a)
∫

Ω ∆u(x) dx =
∫
∂Ω∇u(x) · n(x) ds

b)
∫

Ω v(x)∆u(x) dx+
∫

Ω∇u(x) · ∇v(x) dx =
∫
∂Ω v(x)∇u(x) · n(x) ds

c)
∫

Ω(u(x)∆v(x)− v(x)∆u(x)) dx =
∫
∂Ω(u(x)∇v(x)− v∇u(x)) · n(x) ds

Exercise 3. (Rotational symmetry)

(6 Points)

Let Ω be a domain in Rd with d ≥ 1 and let S be a linear orthogonal coordinate
transformation on Rd, i.e., STS = I. Show that v := (u ◦ S) satisfies

−∆v = −∆(u ◦ S) = 0

provided that u : Ω→ R solves −∆u = 0 on Ω.
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