

Scientific Computing I

Winter semester 2022/2023 Prof. Dr. Carsten Burstedde Uta Seidler and Denis Düsseldorf

Exercise sheet 9.

Submission by **12.01.2023**.

Exercise 23. (Céa's Lemma)

(6 Points)

In the lecture, Céa's Lemma was shown: For a continuous and ellipitic bilinear form $a: H \times H \to \mathbb{R}$ and a continuous linear functional $l \in H^*$ on the Hilbert space H we have

$$||u - u_h||_H \le \frac{C_c}{c_e} \inf_{v_h \in V_h} ||u - v_h||_H$$

where C_c is the continuity constant and c_e the ellipticity constant of a. Show that if we additionally assume $a(\cdot, \cdot)$ to be *symmetric*, then

$$||u - u_h||_H \le \sqrt{\frac{C_c}{c_e}} \inf_{v_h \in V_h} ||u - v_h||_H.$$

Hint: Define a new scalar product on H and use Cauchy-Schwarz inequality.

Exercise 24. (Bilinear elements)

(6 Points)

Consider the unit square $\Omega = (0,1)^2 \subset \mathbb{R}^2$. We call a continuous function $f: \Omega \to \mathbb{R}$ affine bilinear if $f(\cdot, y)$ is affine linear for all $y \in \Omega$ and $f(x, \cdot)$ is affine linear for all $x \in \Omega$.

a) Let $Q(\Omega)$ be the space of affine bilinear functions on Ω . Show that $Q(\Omega)$ has dimension 4, and find a basis which is nodal with respect to the corners of Ω .

Let $n \in \mathbb{N}$. We define $a_i = i/n$ for i = 1, ..., n and decompose Ω into a union of squares

$$\Omega_{ij} = \{ (x, y)^\top \in \Omega \mid a_{i-1} \le x \le a_i, a_{j-1} \le y \le a_j \} \subset \Omega$$

for i, j = 1, ..., n.

b) Find the dimension of

$$V = \{ f \in \mathcal{C}(\Omega) \mid f|_{\Omega_{ij}} \in Q(\Omega_{ij}) \text{ for } i, j = 1, \dots, n \}$$

and determine whether a nodal basis with respect to the gridpoints $(a_i, a_j)^{\top}$, $i, j = 0, \ldots, n$ exists.