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Abstract

Data searchability has been utilized for decades and is now a crucial ingredient of data reuse. How-
ever, data searchability in industrial engineering is essentially still at the level of individual text
documents, while for finite element (FE) simulations no content-based relations between FE simu-
lations exist so far. Additionally, the growth of data warehouses with the increase of computational
power leaves companies with a vast amount of engineering data that is rarely reused. Search tech-
niques for FE data, which are in particular aware of the engineering problem context, is a new
research topic. We introduce the prediction of similarities between simulations using graph algo-
rithms, which for example allows the identification of outliers or ranks simulations according to
their similarities. With that, we address searchability for FE-based crash simulations in the auto-
motive industry. Here, we use SimRank-based methods to predict the similarity of crash simulations
using unweighted and weighted bipartite graphs. Motivated by requirements from the engineer-
ing application, we introduce SimRankTarget++ an alternative formulation of SimRank++ that
performs better for FE simulations. To show the generality of the graph approach, we compare
component-based similarities with part-based ones. For that, we introduce a method for automat-
ically detecting components in the vehicle. We use a car sub-model to illustrate the similarity
ansatz and present results on data from real-life development stages of an automotive company.

Keywords: FE Analysis, Automotive, Searchability, Semantic Data, Outlier Detection, CAE Knowledge,
Knowledge Graph, Graph Database, SimRank, SimRank++

1 Introduction

The introduction of the semantic web at the begin-
ning of the 20th century supported a 'web of data’
rather than a 'web of documents’ [20]. Semantics
enhanced searchability, making data more usable.
Further, graph algorithms using interconnectivity
and semantics can rank the similarity of existing

entities and predict missing links in the data. How-
ever, many engineering domains still do not utilize
these modern data analysis technologies.

In recent decades, computer-aided engineering
(CAE) has become crucial in automotive R&D,
with OEMs running 10,000 to 30,000 simulations
weekly [22]. Despite this, CAE data often remains
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Figure 1: Similarity prediction workflow for relative labeled and unlabeled data. This workflow considers
parts and part groups (components) and predicts the similarity based on two variants of a bipartite graph.
The nodes’ coloring in the heterogeneous graph reflects different node types.

disconnected and underutilized, hindering collab-
oration and problem-solving, with much data be-
coming dark data [21]. In particular, the lack of
searchability limits the re-use of data and the gain
of insight across many simulations. This at a time
where even a single engineer can barely remem-
ber simulations created over the span of a week.
The underlying data access and processing issues
have significant implications across teams and or-
ganizations. Therefore we introduce an approach
for searchability to an automotive CAE domain,
namely crash simulation, where we furthermore
address clustering of results, identification of out-
liers, assessing solution robustness, and ranking
behaviors according to their similarity to existing
designs.

To the best of our knowledge, no methods are
currently available that focus on searchability in
CAE simulations. In order to introduce the se-
mantics required for this, we earlier established a
knowledge graph (KG) for the automotive indus-
try, called car-graph, with a focus on the use case
of CAE crash simulations [17, 18]. Graphs allow
more flexibility than typically possible in a rela-
tional setting, which makes it an ideal fit for the
fast-evolving CAE process in the automotive in-
dustry [17]. In this work, we focus on using graph
algorithms on the car-graph to provide a similarity

score for simulation pairs. Ranking and cluster-
ing of these scores then provides searchability for
simulations.

We are basing the prediction of similarities
in the car-graph on the SimRank method [12].
SimRank estimates the similarity of two nodes
based on their connectivity. Since in our appli-
cation it is crucial to include edge weights, we
study SimRank—++ [2], a SimRank extension that
allows this. Furthermore, we introduce SimRank-
Target++, a modification of SimRank++ that is
better suited to our use case. Due to a change in
how edge weights are used, SimRankTarget+-+ fo-
cuses on how each car part performs in different
simulations, rather than on how car parts per-
form in the same simulation, as is the case with
SimRank++.

As we see later, treating groups of car parts
as components in the similarity assessment can be
more physically meaningful. Consequently, we in-
troduce a method for the automatic detection of
components in the CAE model of a vehicle. With
that, we have two variants for the similarity pre-
diction: the finite element (FE) parts individually
and a group of parts representing components.

There are no public benchmark data available
for simulation similarity prediction. Furthermore,
labeling the data to characterize the crash behav-
ior is a complex engineering task; the behaviors are
usually not classified and typically multi-criterial.
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To evaluate the methods, we therefore introduce
an illustrative example that replicates real de-
velopment changes and allows at least a relative
labeling of the crash behavior.

Figure 1 provides an abstract visualization
of the analysis process presented in this paper.
The process begins with the car-graph, where
the first step involves incorporating parts group-
ing into the data model through component de-
tection. The next stage involves evaluating the
SimRank method for part-based and component-
based graphs, utilizing both labeled and unlabeled
data. For the unlabeled data, we introduce a sim-
ilarity distribution approach and select specific
groups of simulations to verify the methods based
on domain expert analyses.

In Section 2 we recapture related work, fol-
lowed by a description of the simulation setups for
an illustrative example in Section 3. Then we in-
troduce the SimRank methods and our extension
in Section 4. We present our method for compo-
nent detection in Section 5 and show results for
the illustrative example. Next, we introduce an
energy diagram that follows the crash behavior
in Section 6, and in Section 7 we use these rela-
tive labels to assess the similarity predictions and
rankings. Further, we summarize the outcome of
similarity prediction for the illustrative example
in Section 7, where we also evaluate our approach
on unlabeled industrial data from several devel-
opment stages in a project of China Euro Vehicle
Technology AB (CEVT) In Section 8 we show an
example of user workflow and the conclusion and
outlook are in Section 9.

2 Related work

To the best of our knowledge, there are no existing
methods that specifically address the searchabil-
ity of simulations. Similarly, no methods exist to
use graph algorithms, e.g., on car-graph, to predict
similarity. Consequently, we outline other avail-
able methods for assessing simulations’ similarities
and graph algorithms for link prediction.

2.1 Simulation similarities

Dimensionality reduction methods are one of the
popular techniques in machine learning (ML) for
comparing and getting an overview of data [15]. In
crashworthiness, these methods have been studied

since 2008 [1] for exploration and cluster identifi-
cation [16] of FE simulations. Note that one can
consider the distance of the embeddings as a sim-
ilarity measure of the simulations. However, the
focus of the available research has been on outlier
detection or behavior classification [11, 14].

Studies using dimensionality reduction usually
look into deformations of the FE model [10, 11, 14,
16, 23]. The challenge with these methods is their
computational cost and sensitivity to capture lo-
cal differences compared with global deformation.
For example, these methods focus on realizing
an occurrence of a buckling, a global deforma-
tion, in comparison to characterizing the buckling
mode, e.g., its timing, a local feature. Further-
more, these methods’ integration into the OEM’s
workflow has been limited [23], despite the long
period these methods have been available. There-
fore, considering more scalable methods and other
input measures is beneficial.

One example for crash simulations is the FE
solver outputs of energy absorption that gives in-
ternal energy (IE) per part over time, a so-called
energy curve. Studies show that energy absorp-
tion characteristics enable quantifying component
performance for the design of experiment (DOE)
feedback in optimization studies [5, 6]. However,
to our knowledge, there is no research on using
features generic to the problem, such as energy
features, to calculate the similarity of simulations.
Another possibility is to use key performance in-
dicators such as firewall intrusion or occupant
injury criterion, but these reflect behavior on a
much coarser level, which limits their analytical
capabilities.

In [18], we investigated features derived from
energy curves and studied their capability for sum-
marizing the differences between the simulations.
These features have enough resolution to iden-
tify the differences of simulations, and the number
of parts included plays a role in localizing the
differences. As a result, the differences are more
global if more parts are considered compared to
including a limited number of parts. Compared to
the deformation-based approaches, the main ben-
efit is that these features detect local and global
differences. An additional advantage is the compu-
tation efficiency that supports more dynamic user
interactions.

Another aspect of similarity assessment is the
selection of FE entities for comparison, e.g., node,
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element, or part. Due to the modeling techniques,
most of the FE entities are smaller than a com-
ponent of the vehicle. Here, a component refers
to a group of parts whose structural functional-
ity depends on its parts, e.g., two welded plates
of a crash-box, where each plate alone has much
less axial stiffness than the welded ones together.
Therefore, components can be seen as more phys-
ically meaningful.

Note that the grouping information is avail-
able in the computer-aided design (CAD) stage
of development. However, this data is lost in to-
day’s workflow when generating a FE model from
CAD information. Detecting these components
automatically from a FE model is challenging.
In [9], semantics are introduced for FE entities
that enable identifying part splits during the de-
velopment, but the grouping of FE entities from a
structural aspect is not addressed. Consequently,
we introduce a method to automatically detect the
grouping of the FE entities.

2.2 Link prediction

Identifying similar objects based on the link struc-
ture in a graph is a fundamental operation in var-
ious domains such as web mining, social network
analysis, and spam detection [24]. Considering
our unlabeled data and car-graph characteristic,
a weighted heterogeneous graph, there are limited
methods available for link prediction.

Recent advancements in unsupervised meth-
ods for link prediction in weighted hetero-
geneous graphs have demonstrated substantial
progress. Methods such as Graph Autoencoders
(GAEs) and their variants have been exten-
sively employed to capture the complex relation-
ships within these graphs [19]. While adaptations
like Heterogeneous Hypergraph Variational Au-
toencoder (HeteHG-VAE) exist [8], due to the
intricate structures and numerous parameters,
HeteHG-VAE can be prone to overfitting, espe-
cially when the amount of training data is limited.
This overfitting can result in poor generalization
to unseen data.

Additionally, matrix factorization approaches,
such as Weighted Non-negative Matrix Factor-
ization (WNMF), have been adapted to leverage
node and edge heterogeneity effective [13]. How-
ever, these methods often struggle to capture the

complex structural information inherent in hetero-
geneous graphs and loose structural information.
Recent studies also explore leveraging random
walk-based techniques, like node2vec, modified to
accommodate edge weights and heterogeneity [13],
enhancing the embedding quality for better link
prediction. However, it may still miss capturing
complex structural dependencies and higher-order
proximities inherent in heterogeneous graphs,

Amid the existing similarity approaches, Sim-
Rank [12] has emerged as a powerful tool for
assessing structural similarities between two ob-
jects. Similar to the well-known PageRank [3],
SimRank scores depend merely on the link struc-
ture, independent of the textual content of objects.
The major difference between the two methods is
the scoring mechanism. PageRank assigns an au-
thority weight for each object, whereas SimRank
assigns a similarity score between two objects.

The Car-graph is relatively small compared
to typical social networks, with fewer than 1000
nodes as opposed to tens of thousands. This
smaller dataset limits the effectiveness of other
methods, and the presence of multiple seman-
tics adds to the challenge of model generalization.
Therefore, we simplify the graph to a weighted bi-
partite graph with two types of nodes and use the
widely recognized SimRank method [12].

3 Simulations setups

Simulation similarity assessment is a new con-
cept within CAE for which no public benchmark
data is available. Using a submodel based on the
Yaris FE model from CCSA [4], we generate sim-
ulation data that allows easy relative labeling of
the crash behavior, which is the first benchmark
data in the domain'. Figure 2a shows the selected
components of the submodel, where the main com-
ponents are the front bumper beam, crash-boxes,
and side-members.

In this dataset, each simulation includes 28
parts. Originally the right-hand side (RHS) and
left-hand side (LHS) were asymmetric regarding
the xz plane. Therefore, the FE model is modi-
fied to make it symmetric. The specific changes
consist of removing the toe hook from the RHS,

!The simulations and databases are available at:
github.com/Fraunhofer-SCAI/GAE-vehicle-safety


https://github.com/Fraunhofer-SCAI/GAE-vehicle-safety

Springer Nature 2021 ETEX template

Rigid Wall

velocity ® Distributed added mass

(a) (b)

® Boundary constraints on X, v,

Thickness
T1 inner plate
T2 outer plate

() (d)

Figure 2: FE-sub-model setup, (a) top view of the included components with applying symmetry on
crash-box, side-member and bumper beam, (b) add boundary conditions and mass, (c) removing toe hook
from the bumper beam. (d) crash-box thickness parameters.

Figure 2c¢, and making the bumper beam, crash-
box and side-member reinforcement symmetrical.
To achieve a slight deformation also in the side-
members, the side-members end is constrained in
x displacement and the moment along the x axis;
and a total of 500 kg is added to increase the
kinetic energy, Figure 2b.

Our study consists of 66 simulations of a full-
frontal impact against a rigid wall with a speed of
56.3 km/h. These simulations have around 30 —
40% increase in total internal energy compared to
the complete FE-model. Furthermore, the simu-
lation setups for the submodel have minor design
changes that are replicating real development pro-
cess changes. Consequently, the differences in the
outcome of the simulation are in the scale of CAE
development processes. The simulations vary in
crash-box plate thicknesses, where the crash-box is
built of two sheet metal thicknesses, Figure 2d. For
all simulations, the crash-box outer plate thick-
ness, 11, is dependent on the inner plate thickness,
T27 by

Ty — T, = 0.6. (1)

Here, Ty increases from its minimum value in
equidistant steps of 0.1 [mm]. These variations are
implemented equally on RHS and LHS. In a sym-
metric setup, 75 of RHS and LHS increase equally
in thickness, while for an asymmetric setup RHS
and LHS thicknesses increase unsymmetrically.
Figure 3a shows the employed distribution of the
T5 thickness value for LHS and RHS of crash-
boxes for 66 simulations.

These changes cause asymmetrical and sym-
metrical absorption, which results in three crash
modes for the deformation, Figure 4. The crash
mode indicates the yaw angle of the bumper beam.
For this symmetric load-case a symmetric struc-
tural stiffness results in a yaw angle of zero. In
Figure 3a the simulations with equal thicknesses
on LHS and RHS are on the diagonal. For sim-
ulations below the diagonal, the LHS is stiffer,
causing the crash mode to have a negative yaw
—uv,. For those above, the stiffer RHS causes a
positive yaw +wv, for the crash mode.

Among these 66 simulations, we pick five
simulations as reference simulations for the in-
vestigation in Section 6. Figure 3b summarizes
the crash modes for the selected reference simu-
lations, including one zero mode simulation and
two simulations for each negative and positive
mode. Simulation three is the base model with
zero crash mode. The negative and positive modes
have mirrored thicknesses, i.e. 30 with 31 and 60
with 61. They also have different stiffness ratios,
Topps/T2, s, 1€ 60-61 is stiffer than 30-31. The
reference simulations will later be used to find the
most similar ones, see Section 7.

4 Simulation similarity
prediction

SimRank is an approach that is applicable in
any domain with object-to-object relationships. It
measures the similarity of the structural context in
which objects occur, based on their relationships
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Figure 3: Simulation setup consisting of 66 sim-
ulations (a), where five are chosen as reference
simulations (b). Colored points in (a) are the
reference simulations in (b).

with other objects. Effectively, it computes a mea-
sure that says ”two objects are similar if they are
related to similar objects” [12]. As the base case,
SimRank considers an object maximally similar to
itself, to which we can assign a similarity score of
1.

For crash simulations, we could say that two
simulations are similar if the energy absorption of
the most energetic parts of the vehicle are simi-
lar to each other. This definition has two parts:
first, the similarity of the parts associated with
each simulation, and second, the similarity of the
amount of energy absorbed. Consequently, formu-
lating the crash simulation as a bipartite graph,
simulation and included parts, requires evaluating
the similarity of the parts referenced by each sim-
ulation and using suitable features reflecting the
energy absorption. This emphasizes the need to

Zero

+
\
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NQ:
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B sim3 N Y
[ | s:$ 30 \x\,,/

B sim31

Figure 4: Defined relative label for crash mode
based on Yaw axis rotation. FE simulations result
follows the color coding of the crash modes.

look for something more than what the objective
of the SimRank method provides. Note, we use the
energy features introduced in [18].

4.1 Basic SimRank

Considering the basic SimRank, the similarity
s(a,b) € [0,1] between objects ¢ and b is defined
by a recursive equation. If a = b then s(a,b) is
defined to be 1, otherwise,

FlEm S L i) @

ZEE(a) JEE(b)

s(a,b) =

where the set E(a) contains the edges of node a,
and C is a constant between 0 and 1. C' gives
the rate of decay, since C' < 1, as similarity flows
across edges [12], and we use C' = 0.8. A solution
to SimRank equations is reached by iteration to
the fixed point [12].

4.2 SimRank-+-+

In [2], it was shown that SimRank scores are
not intuitively correct for complete bipartite
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graphs? and the authors introduced SimRank++,
a so-called evidence-based SimRank. Additionally,
SimRank++ uses edge weights and the so-called
spread to achieve similarity scores consistent with
the weights of the graph. Note that in our appli-
cation, we typically obtain a complete bipartite
graph and have edge weights.

In particular, [2] introduces the notion of evi-
dence of similarity between nodes a and b

|E(a)NE(b)|

evidence(a,b) :=eqp = Z 5 (3)
i=1

as an increasing function in the number of com-
mon neighbors. By using evidence in the score def-
inition, the similarity between two nodes increases
with the number of common neighbors [2].
Furthermore, to include the edge weights in
the similarity calculations, normalization and scal-
ing according to the local variance is included in
SimRank++ [2]. This modification is intended to
distinguish between the importance of edges with
a small weight and those with a large weight.
Specifically, the weights W are defined as
W, . = efvariance(i) w(a,i) (4)
Y= Y icp@ w(a,)

normalized_weight(a,i)

spread(i)

where variance(i) is the variance of the edge
weights w of node i. All together, SimRank++
utilizes the number of common neighbors and the
edge weights to define similarity scores iteratively
by

st (a,b) = e p-C Z Z WaiWh, s (i, 4)-

i€E(a) jEE(b)

Computationally, SimRank++ wuses iterative
methods similar to SimRank, however it has ad-
ditional updates [2].

4.3 SimRankTarget+-+

We observe that the normalization (4) in Sim-
Rank++ implicitly imposes a direction on the
edges even though the graph is undirected. Note

2Note that, a complete bipartite graph is a bipartite graph,
where every vertex of the first node-set connects to every vertex
of the second node-set.

that in a bipartite graph, a pair of nodes (v, w) €
V x V is associated with each edge e € FE; v be-
longs to set A (source) and w belongs to set B
(target), where V' is a list of nodes and F is a
list of edges in a graph. While SimRank++ per-
forms its normalization using edges that have a
common node in the set A, we propose SimRank-
Target++ (s;,5;), Where we normalize the weights
according to a common node in the set B. As a
result, S;Jgrt does the normalization based on the
target nodes instead of the original SimRank++,
which does it based on the source nodes. We be-
lieve that how the weights are to be normalized
depends on the physical meaning of the source and
target.

For crash simulations, this means normalizing
each part’s energy absorption characteristics with
similar parts of other simulations, set B, instead
of parts related to one simulation, set A. In other
words, with target normalization we consider the
energy distribution of each part, while with source
normalization we consider the distribution of parts
of a vehicle. As in similar load-cases, the total
amount of IF is almost the same for all analyses?,
the effect of the parts is expected to disappear.
We will discuss this further in Section 7.2.

Consequently, we introduce ), where we nor-
malize the edges concerning the target nodes

Q J— e—variance(i) M
| W ZjeE(i)w(]J)
N———

()

normalized_weight(a,i)

and using @ we define iteratively

stat(@0) = eapC D Y QuiQuysiya(ij)-

1€E(a) jEE(b)

4.4 Matrix Formulation

Note that one can reformulate the SimRank prob-
lem using matrices. Given a graph one can define
the column normalized adjacency matrix U:

- _ JYIEG)| ifie E(),
Uij = { 0 otherwise (6)

3Minor design changes will cause variations in the weight
of the vehicle that will change the total I E of the impact, but
these changes are minor.
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The SimRank matrix S is then
S =max{(C -UTSU), I},

where I is a |V| x |V| identity matrix, and the
maximum is to be understood entry-wise.

Now define, here assuming an undirected
graph with symmetric weights for simplicity,

diy= Y w(i,j)= Y w(ji).

JEE(7) JEE(i)

We observe d(i) = |E(i)| when w(i,j) = w(y,4) =
1 for j € E(i), and 0 otherwise, so we can write
(6) as Uy = w(i, j)/d(j).

If we consider (4) and (5) without the spread,
which is the same for both cases, we can write
in (4) Wei = w(a,i)/d(a) and in (5) Qu: =
w(a,i)/d(i). The former is a row normalized ad-
jacency matrix, while the latter a column normal-
ized adjacency matrix, as it is used for the original
SimRank matrix formulation.

5 Component detection

FE-modeling techniques require arranging vehicle
components into several parts, e.g., due to mate-
rial and thickness differences?. Consequently, FE-
solvers output result quantities per defined parts.
With components, we refer to a group of parts
that in their structural analysis from a CAE analy-
sis perspective are highly dependent. For example,
the stiffness of the side-member component, (F)
in Figure 5, depends on three reinforcement plates
as well as the inner and outer side-members.

One application of using components is in se-
lecting the most essential parts for ML pipelines.
In [18], we showed that using the maximum of the
internal energy is capable to filter the essential
parts. However, this approach sometimes excludes
smaller parts that are of interest from crashwor-
thiness aspects, e.g., the reinforcement plates, (1),
(m), (n) in Figure 5.

The existing split into parts makes the post-
processing of the results per component challeng-
ing. Since the parts connectivities as a component
are unavailable, it is vital to develop a method for
component detection to facilitate post-processing.

4For further background on crashworthiness, see e.g. [7].

Therefore, we propose a method for component
detection, verify its result for the illustrative ex-
ample, and discuss its scalability.

Component detection outputs list of parts of
an FE simulation that together form a component
whose functionality should be evaluated together
for a load case. In this way, it allows us to design
bipartite graphs that consider a group of parts
instead of a single part, see Section 7.1. In partic-
ular, the functionality of entities is considered in
order to bundle them. Consequently, this section
also discusses ways to evaluate energy properties
for components.

5.1 Component detection method

There are several possibilities for component de-
tection. One option is to preserve this information
from CAD to CAE by introducing a correspond-
ing workflow within the company. However, this
option is for now not feasible due to the involved
process dependencies that are time-consuming to
establish in big OEMs.

A second approach is to develop an inter-
preter for the specific FE solver that transfers
each connection type to a generic connection for
component buildup. In [17], we partially employed
this method to identify connection changes in the
model. The limitations of this approach are: a)
time-consuming development due to the depen-
dencies on the specific solver and b) the need to
use several modeling representations for different
types of connections.

Additionally, recent computational power al-
lowed FE-models to include more details. As a
result, connectivities, e.g., bolts and clips, are
modeled with generic FE entities, e.g., shell solid
elements, instead of a solver-specific abstraction
for connections. Therefore, developing the inter-
preter would be even more complicated. Moreover,
both outlined approaches deliver several connec-
tions per pair of parts due to assembly require-
ments, e.g., several bolting or welding. The high
number of connections requires additional filter-
ing to distinguish a component’s assembly from
a component-to-component connection. Thus, a
more automatic method is beneficial.

Therefore, we develop a geometrical search
method that detects components. We consider
each part in the vehicle as a box and then group
highly overlapped boxes. The geometrical features
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(E) connector plate 3
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Figure 5: Grouped component for the FE sub-model, 27 parts and eleven corresponding components. In
the table, uppercase letters are referring to the component and lowercase letters to the parts. In the figure,
only one of the symmetric parts is marked and correspondingly subscripted with either LHS or RHS.

of the parts define the box, including length,
width, and height, along with the coordinate sys-
tem of the FE-model (L-x, W-y, H-z). In grouping
these boxes, we make the following procedural
decisions

e Include specific entities from the FE-model®.

® Define FE-modeling guidelines to differenti-
ate parts from connections®.

® Decide on a box merge in a pairwise compar-
ison.

® Define batches for pairwise comparison via
two-dimensional (2D) k-means clustering” to
reduce computational time.

e Consider two-stages in merging: complete
and partial overlap. Complete overlap is the
scenario, where a smaller box (child) is lo-
cated entirely in a bigger box (parent). By
contrast, partial overlap refers to situations
where boxes are not completely overlapped.

e Skip merges in the direction of the im-
pact/loading for partial overlapping to cap-
ture the load path.

50nly shell elements since beam and solid elements usu-
ally represent the connections and have a single properties
ID (PID) for all same type of connection in the model.

SRequire null shell elements for components modeled with
solid elements. null shell is a recommended method for better
contact modeling, MAT_NULL in LS-DYNA.

7Using the implementation from, sklearn.cluster.KMeans
python package.

We start the investigation on the FE-sub-
model presented as an illustrative example, in
Section 3. This model includes 28 parts, and 27
parts match the prescribed entity selection. From
the crash analysis engineering view, this model
contains eleven components: (A) bumper beam,
(B) crash-boxes on right hand side (RHS) and left
hand side (LHS), (C)(D)(E) connector plates on
RHS and LHS, and (F) side-members on RHS and
LHS. Thus, the intended outcome is eleven compo-
nents. Connector plates between crash boxes and
side members could be one component. However,
as mentioned, in our grouping procedure, we pre-
vent merging boxes with overlaps in the direction
of the impact/loading.

For grouping boxes, we compare boxes pair-
wise. Pairwise comparison of all parts for the
complete FE-model is computationally expensive.
Therefore, we use k-means clustering” on the
boxes’ centre of gravity (COG). Pairwise compar-
ison takes 346 seconds for the complete model of
Yaris with 728 initial parts, and with k-means
clustering, we reduce the time to 23 seconds.
In this way, the clustering of the boxes cre-
ates batches to reduce the number of pairwise
comparisons. We consider the boxes COG dis-
tances in pairwise comparison. However, the three-
dimensional (3D) distance of parts clusters the
parts locally and will skip some desired merges.
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For example, the bumper beam component in
Figure 5 (A) will encounter this issue since the
bumper beam, part (a), and the RHS and LHS
frame front cap, part (b), have a significant COG
distance in 3D space. In this example, the 3D dis-
tance will cluster the frame front cap with the
crash-box, not the bumper beam. Consequently,
we consider the 2D space for clustering the boxes
and assess each plane separately, top-view (zy),
front-view (zy), and side-view (zz).

In this example, the bumper-beam and the
frame front cap have an apparent distance in the
top-view and front-view clusters, these boxes will
not be compared. However, the boxes COG are
close in the side-view, and will be in the same
cluster to be assessed. As a result, we have an ad-
ditional iteration loop to assure all required pairs
are assessed, in each loop we are switching between
2D views to change the clustering. After several it-
erations, we compare all remaining parts pairwise
to be sure all boxes have been compared.

The pairwise comparison investigates two sce-
narios: complete and partial overlap. Complete
overlap is when a box is entirely inside a larger
box, Figure 6a. Here, the merged box takes over
the dimensions of the larger box. For partial
overlap, we use as the comparison quantity

a

|CC0!]b1 — Ceogy, |

s < T, (7)
(Ley, + Le,,)/2
—_——

b

i.e., the fraction of the COG distance and the
average of the boxes’ side lengths in the chosen
direction.

Ceogy, and Ceogy, AI€ the extracted 2D COG
coordinates for the compared boxes, box one and
two respectively. More specifically, the 2D coordi-
nates are in the respective global axis direction: x,
y, and z. The L., and L, are the box dimen-
sions in the corresponding axis, for boxes one and
two respectively. The dimension L. is aligned with
global axis: L, Ly, and L.

The thresholding with equation 7 is used for
two scenarios. First, we classify if the overlaps
are in the impact direction and, second, we de-
cide on overlap merging. Therefore, two different
thresholds are applied for each scenario: o and S,
respectively.

- —t —

= -t =

y/z |i .

T—) x b
(a) Complete overlap in impact direction z. It is not
classified as being in impact direction due to a/b <
« and will go to the next check for merging. Note

that we here use a larger threshold « for illustration
purposes.

y/z

L.

(b) Partial overlap in impact direction z. It is clas-
sified as being in impact direction due to a/b > «
and therefore not approved for a merge.

Figure 6: Two examples of classifying the over-
laps in direction of the impact with big and small
ratios of a/b, subfigure (b) and (a) respectively.

For impact direction classification, threshold «
is set to a low value, e.g., 0.01, which prevents box
merging if a/b is bigger than this value, Figure 6b.
Afterwards, if the overlap is not classified as being
in the impact direction, the percentage of overlap
is evaluated to decide on the merging of the boxes.

For the overlap check, the impact plane direc-
tions are assessed with the threshold ( set close
to one, e.g., 0.97, Figure 6a. Here the boxes will
merge for a large ratio of a/b. In a full-frontal im-
pact in the x plane, the considered overlaps are
only in the y and z plane, Figure 7.

Algorithm 1 Box merge for impact direction x

if a, /b, < a and a, > 0 then
if a,/b, < B and a,/b, < § then
merge boxes
end if
end if
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y/z
L.

Figure 7: Decision-making of box-merge in im-
pact plane, yz.

5.2 Component verification

The outcome of this method for the illustrative
example matches the table in Figure 5. Initially,
27 boxes represent the 27 parts and after merging
eleven new boxes are generated that include the
parts as in Figure 5. Here we run the merging
for the frontal impact that will skip the merges
in the z-direction; see the coordinate system in
Figure 2a. Consequently, the connector plates even
with the existing overlap in the z-direction are not
merged, components C, D, and E.

Afterward, we implement this method on the
full Yaris model to assess the scalability of this
method. One obstacle in the full model application
is the dominance of the exterior parts that is act-
ing as a wrapper for a big proportion of the parts,
e.g., the front facia and outer layer of the vehicle
body. A solution for this is to exclude the exterior
parts defined by the user. An additional option is
to combine part filtering with grouping as,

e Filter the most energetic parts.
¢ Apply the component detection with the lim-
ited search for filtered energetic parts and
their neighbors.
e Update the filtering with the most energetic
components.
In this way, the focus will remain on the structural
parts and exterior parts will not cause an issue.

5.3 Component features

In [18], we introduced energy features for the
IFE of each part with initial absorption time [¢;],
maximum internal energy [[F,,..], and end of
absorption time [t,]. Since these features are part-
based, enabling the post-processing of the results
at the component level requires an additional
step to combine the features. Two approaches ex-
ist to generate component-based features. First,

combining the extracted features of the grouped
parts belonging to a component. Here, combining
features refers to determining the minimum, max-
imum, sum or average of a group of features. The
other alternative is summing up the energy curves
of the parts before feature extraction.

For IE curves, the effect for IE,,,, is minor
since IFE saturates after the maximum. Conse-
quently, the sum of I F, . for parts and max of [E
summation curve differs only slightly. However,
the time features ¢; and t,, of IE curves deviate
more between the two approaches. In curve sum-
mation, the early ramp-up or late saturation of
the I E vanishes for the parts with the smaller en-
ergy due to the dominance of the more energetic
parts. As a result, we propose using the combined
features of parts for the time features, specifically
the minimum value of ¢; and the maximum value
of t,,, while utilizing I E,,,; from the summation
curve.

6 Energy diagram

We introduce an energy diagram to illustrate
simulation behaviors in a crash simulation. For
simplification, we have a 2D view using I E,,,,, and
t,, where t,, contains the t; feature and relates to
absorption time, At = t,, — t;. An additional ben-
efit of ¢,, is that it is easier to understand visually
than At for processing the sequence of behaviors,
i.e., the part’s relative behavior [18].

To build the energy diagram, we select the
five most energetic parts for each simulation and
add the mean of the energy features to the plot
and connect the parts to it. Note that, consider-
ing the 28 parts included in each simulation of
the illustrative example will make the visualiza-
tion challenging. But, the five most energetic parts
turn out to be the same for all simulations, in-
cluding the four plates of the crash-box and the
bumper beam.

6.1 Diagram examples

Figure 8 shows the energy diagram for the base
simulation. Left and right directed arrows indicate
the LHS and RHS parts of the crash box, re-
spectively, where a square represents the bumper
beam. The final energy diagram is obtained by
connecting each part to a point reflecting the
average of the energy features of the five parts.
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Figure 8: Energy diagram for the base simula-
tion, number 3 in Section 3, considering five parts.

Figure 9a displays the energy diagrams for sim-
ulations 30 and 31. These simulations have the
same thickness value change but on opposite sides.
As aresult, the corresponding energy diagrams are
essentially mirrored. Their structures look iden-
tical except for the switch between RHS/LHS,
reflecting the change in producing negative or
positive yaw.

In Figure 9b we compare one of these mir-
rored simulations to the base model. We observe
that the I'E,,,, has decreased for the RHS crash-
box plates, which is due to the stiffness reduction.
However, in comparison, ¢, has not changed. The
reduction of IF,,., while ¢, is unchanged indi-
cates a so-called stack-up state®. However, the
average of the energy features shows lower I Fy, 4.
Therefore, the side-members are absorbing the re-
maining energy since the total IE should remain
the same over all the parts in the simulation. An-
other noticeable observation is that the bumper
beam absorption energy is independent of the
crash-box, however, the t,, is dependent on it.

Figure 9c presents the energy diagrams for
simulations 31 and 61, wherein both the RHS
crash-box is stiffer than the LHS resulting in the
negative yaw crash mode. We observe an offset
in the diagrams, while the structures are simi-
lar since they reflect the similarity of the crash
mode. The angle differences in each energy dia-
gram correspond to the yaw angle. Note, the offset
is due to more energy absorption in simulation 61,
reflecting its higher thickness values.

8Maximum possible deformation in a component.

6.2 Diagram similarities

Representing simulations as a diagram with en-
ergy features enables the comparison of simu-
lations. The illustrative example highlights two
scenarios: a change in the structure of the dia-
gram and an offset of the whole diagram. From
an engineer’s perspective, these two aspects can
be considered as the crash mode and absorption
factor.

A crash mode reflects the absorption of the
parts relative to each other, represented by the
structure of the diagram. On the other hand, one
looks at how much energy is absorbed with the
absorption factor. Thus, the absorption factor op-
erates as an offset factor in the energy diagrams in
this data representation. Consequently, the same
crash mode, but different absorption factors ex-
ist if the relative stiffness of the components is
similar.

With these visual investigations of similar-
ity between simulations using energy diagrams,
we have the following research question: how to
implement these in graph analytic methods to
estimate simulation similarities? Working with
unsupervised learning methods on these energy di-
agrams would involve treating these as separate
data objects and individual weighted graphs, an
ongoing open research question [25]. Instead, we
directly employ the energy features as weights in
a graph to be able to use established methods
for link prediction. In this way, we use the edge
weights to detect slight differences between simu-
lations as presented in the examples we discussed
in Section 6.1.

7 Similarity results

In this section, we compare different SimRank
methods for predicting the similarities of sim-
ulations. We start with a short description
of our bipartite graph, both part-based and
component-based, and its connection to our graph
database [17]. Afterward, we evaluate the Sim-
Rank methods and compare them with the root
mean square error (RMSE) of displacements and
internal energy as a similarity baseline. We use
two approaches for evaluating the similarity pre-
dictions:
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Figure 9: Energy diagram for selected simulations from Section 3.

e Comparing the relative labeled ranking. In
this case, we order the five reference simu-
lations from an engineering perspective and
compare this ranking with one based on the
computed similarities.

® Searching for similar simulations, where for
the five reference simulations we find the
most similar ones among the remaining 61
simulations.

Finally, we present results on an industrial

crash simulation data set.

7.1 Bipartite graph

Let us provide a brief overview of our graph model-
ing for both part- and component-based bipartite
graphs. Figure 10 shows the data schema that we
here employ, which is part of the entire graph
modeling we introduced in [17].

In this schema, a node reflects a FE sim-
ulation outcome, where its properties stem from
global entities of the simulation, e.g., total mass
or impact energy. An FE-model contains many
elements, where a group of elements with the
same properties is identified as one part. Conse-
quently, one simulation includes several parts, and
we model it with a node as the main entity
representing the simulation.

The edge O— NRG.PART —(O relates
nodes to nodes and includes certain energy
features of the parts as weights. Design nodes
bundles parts that have similar FE-model fea-

tures. A node is a group of different

Figure 10: Graph data schema used for simula-
tions similarity prediction, full schema available
in [17].

nodes in the database that reflect the outcome of
our component detection method Section 5.

For simulations similarity prediction, we are
looking to predict the O— siM_siM —O edge. Both
bipartite graphs, part- and component-based, re-
spectively, have with and two node
types, see Figure 11 for the part-based graph.
Therefore, the similarity of connections between
is used to predict a connec-
tion.

We have two scenarios for structuring

the bipartite graph with (Sim)— SIM_DES —(Des ).

First, for the part-based similarity, we follow
(Sim )~ NRG_PART ~{ Part - PART_DES —(Des ). Here,
we obtain the edge weight from the energy
features of the parts and predict the simi-
larities of simulations based on the similarity
in the energy absorption of the parts. Sec-
ond, for the component-based similarity, we go

along (Sim )~ GRP_FTS ( Grp )~ GRP_DES —(Des) and

use the grouped features as weights and predict
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Figure 11: Bipartite graph showing the edge weights P, measured in

[107 - Nm/s]. The edge colors

represent the reference simulations discussed in section 3. This graph hlghhghts the distribution of edge
weights for each part versus each simulation, emphasizing the importance of the s:;Jgrt normalization
technique in analyzing and comparing simulation data.

PID Part Name
2000000 bumper beam
LHS RHS
2000001 2000501  crash-box inner plate
2000002 2000502  crash-box outer plate

Table 1: Part names for PID in Figure 11.

the similarities of the simulations based on the
components absorption similarities.

7.2 Part-based similarity

To study part-based similarity, we compare the re-
sults from different SimRank formulations with a
defined relative labeled ranking for the Yaris sim-
ulations from Section 3, where we focus on five
simulation pairs for ease of presentation. Table 2
summarizes the results. In this table, we order the
columns according to the desired ranking based on
engineering judgment as follows:

e Simulations (30 -(31) are the most similar due
to the symmetric changes.

* Simulations (3 )-(61) are the least similar since
there is the most significant stiffness change
among all simulations.

® The pairwise similarity of (30) or (31) to simu-
lations (3) and should be equal. Equality
comes from symmetrical behavior that acts
as a mirrored weight on nodes.

e Simulations and (31) are more similar
to (3) than since the stiffness differ-

ence is less in (3 )-(31)/(30) compared to (61 -
(31)/(30). As aresult, simulations (3)-(30) and

(3(31) have the second-order ranking with
equal values, and simulations (61)-(31) and
(30 -(31) have the third-order ranking.

The used methods include SimRank (s),
weighted SimRank (s,,), weighted SimRank with
evidence (S evd), weighted SimRank with evi-
dence and spread (s71), and weighted SimRank
with evidence and spread that is normalized over
target nodes (strgt) We employ the energy power
absorption (P, = IFEyq./At) of the parts as the
weight for the O— siM_DEs —O edges. Another
alternative for the edge weight is the I E,,,4;; how-
ever, P, gives better results. In the study, we
select the five most energetic parts, which are the
bumper beam and two plates of the crash-box on
LHS and RHS, Table 1.

Table 2 presents the (Sim -(Sim) similarity pre-
dictions? for the illustrative example. Figure 11
shows the five most energetic parts for the five
simulations. This results in a fully bipartite graph,
and disregarding weights means that two sim-
ulations are similar if the energetic parts are
similar. Therefore, as expected from Section 4,
SimRank predicts that all simulations are simi-
lar, which shows that the method is insufficient to

9We modify the SimRank similarity calculation in the
NetworkX Python package to evidence-based SimRank with
spread consideration.
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Method ~ 30-31  3-30  3-31  61-31 61-30  3-61
s 0.4444 0.4444 0.4444 0.4444 0.4444 0.4444
Sw 0.4749 0.4795 0.4798 0.4789 0.4783  0.4892
6 3 2 4 5 1
Swevd 04379 04427 0.4430 0.4420 0.4414 0.4527
6 3 2 4 5 1
stt 0.2084 0.2104 0.2102 0.2267 0.2260 0.2295
6 4 5 2 3 1
sy 0.3119 0.2719 0.2717 0.2695 0.2695 0.2399
1 2 3 4 5 6

Table 2: Similarity prediction from different methods when considering the five most energetic parts in
the illustrative example, Figure 11. The order of columns is the expected order as described in Section

7.2, (C = 0.8, weight = P,).

Scalar  Time Step Parts 30-31 3-30 3-31 61-31 61-30 3-61
tmaz All 5.55 7.60 7.82 21.16 21.96 15.25

1 2 3 5 6 4

Displ tall All 7.97 7.02 7.09 1735 2045 13.82
3 1 2 5 6 4

tmaz Five 5.92 4.74 4.67 9.06 9.83 6.03

energetic 3 2 1 5 6 4

Pe tn All 4.5 299.1 2951 3275 3313 69.5
1 4 3 5 6 2

Table 3: RMSE for the difference of displacement (Disp [mm]) and P, (((MNm/s]) in each pair of simula-
tions, considering a different number of parts and time steps in the illustrative example. The even rows
show the ranking of the distances. The order of columns is the expected order described in Section 7.2.

evaluate the similarity between simulations with
similar energetic parts but different absorption
distributions.

With the P. weight, the predicted similarities
still differ from our expectations for s, Sw,cud
and sTT. However, the s;f, method provides a re-
sult that reflects our relative labeling. Note that
to observe an effect using the weight factors, they
need to be scaled to be smaller than 2 (P, scaled
with 10° based on this model unit system, energy
[N — mm] and time [s]). If the spread is more
expansive than two, then all similarities become
zero, and if it is smaller than one, the result is
similar to the weighted graph without spread.

It is interesting to further discuss the differ-
ence of 57,7, and st in this use case. Considering
sTT and normalizing the edges regarding the sum
of the edges in the source nodes refers to normal-
izing each part absorption with the total IE in a
model, which is more or less constant for all the
simulations when considering one load-case.

Alternatively, normalizing for edges in the tar-
get nodes, we are normalizing the edge weight with
the total absorbed energy for that specific part
in all simulations, which highlights the absorption
efficiency of that part for each simulation. Con-
sequently, the second approach is more relevant
for comparing simulations since we can weigh the
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parts relative to each other instead of the first ap-
proach, which looks into the relation of the parts
in one simulation.

To further study the performance of the pro-
posed algorithm, we compare with rankings based
on similarity or distance measures for simulations.
A common approach is to assess differences in
the simulations is by looking at mesh-based func-
tion differences, e.g., [11, 10]. Therefore, we use
the differences in the displacement between the
simulations and use the RMSE as the distance.

Table 3 summarizes the RSME of the dis-
placements and the corresponding ranking for the
illustrative example in three scenarios: all parts at
the last time step t,,4., all parts in all the time
steps, and the five most energetic parts in the last
time step. From Table 3 we gather that none of
three approaches can capture the expected crash
behavior in the order prescribed previously. The
top three and the last three similarities are invari-
ant. However, there is a different order within each
cluster. Differences in the ranking show that this
method is time-step dependent.

In addition, the meshes of the parts should be
the same for this method to be able to evaluate
the RMSE. Further, looking at all time steps is
computationally expensive, and the time sequence
of events can lead to high differences while the fi-
nal crash mode is similar, e.g., stack-up situations.
While looking at only the last step would solve
this issue, but the sequence of events will still be
missing in the similarity calculation.

Another approach is to evaluate the RMSE for
the internal energy of the parts with more global
features than displacement, see the last row in
Table 3. Here for simulation pairs, P, are com-
pared for the five most energetic parts. The main
difference is the ranking of (3)-(61) as the second.

So far, we have investigated different config-
urations of the SimRank++ method for similar-
ity prediction between simulations. An additional
hyperparameter to evaluate is the number of em-
ployed parts from each simulation that are used
in the bipartite graph. Table 4 summarizes SZFT;
prediction for 2, 5, 15, and 28 (all) parts being
considered. The order of the predicted similarity
between simulations has the expected pattern for
the relative labeled data upwards from including
five parts. Noteworthy, the similarity score spread
declines when including more parts.

7.3 Component-based similarity

Initially, we constructed a bipartite graph based
on the FE parts to predict the similarity of sim-
ulations. We now consider similarity predictions
based on the components, where we use the out-
come of the component detection presented in
Section 5. Table 4 summarizes the prediction
result of s;j;t for the component-based bipar-
tite graph while increasing the number of most
energetic components included. This evaluation
requires at least three components to fulfill the
previous section’s pre-defined ranking. Parts in-
cluded in these three components are similar to
the five parts in the similarity prediction of Table
4. However, using components, the predicted sim-
ilarities have higher values.

Additionally, for the component-based similar-
ity, the maximum range of the spread is achieved
by including five components, 15 parts, whereas
for part-based similarity, it is with five parts.
Note that the 15 parts involved in component-
based similarity are not equivalent to 15 parts
in part-based similarity. Six parts are the side-
member reinforcement plates when filtering with
components and these are not selected as the most
energetic parts when using parts. Consequently,
component-based similarity performs adequately
with a more stable result; however, the part-based
similarity is more sensitive.

Moreover, the similarity range drops less with
increasing the number of components than with
the number of parts. If we compare the full model
prediction, 28 parts for the part-based compared
with eleven components, the component-based
has a broader range than the part-based. Overall
component-based similarity shows better results
in this use case.

7.4 Searching simulations

In this section, we use the similarity prediction
methods to search for simulations similar to the
five reference simulations. First, we compare the
capabilities of the sj;;t and RMSE of P, meth-
ods as a search tool. In Figure 12 we visualize for
each of the reference simulations from Section 3
the corresponding top seven similar simulations.
We expect to have the diagonal points, z =
y, similar to simulation three with zero modes.
This is because the points have the same relativity
of the thickness of the crash-box plates. Likewise,
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No. Parts  30-31 3-30 3-31 61-31 61-30 3-61 Range
2 0.4239 0.4243 0.4243 0.4235 0.4228 0.4234 0.0016
5 0.3119 0.2719 0.2717 0.2695 0.2695 0.2399 0.0719
15 0.2763 0.2568 0.2565 0.2518 0.2517 0.2393 0.0370
28 0.3086 0.2976 0.2973 0.2947 0.2945 0.2902 0.0184

Table 4: Part-based s;' T, similarity prediction deviation regarding changing the number of energetic

trgt

parts included in the illustrative example, Figure 11, (C' = 0.8, weight = P,).

No. Parts ~ 30-31 3-30 3-31 61-31 61-30 3-61 Range
2 0.4198 0.4211 0.4212 0.4180 0.4166 0.4182 0.0046
3 0.4125 0.4071 0.4071 0.4009 0.4003 0.3967 0.0157
5 0.2440 0.2260 0.2262 0.1997 0.1990 0.1858 0.0583
11 0.2517 0.2394 0.2395 0.2266 0.2260 0.2166 0.0351

Table 5: Component-based stt,';t similarity prediction
getic components included in the illustrative example,

2.6 31 2.6 °
E . «3 E o°
.E.z,z ° oo: ® 30 E:2.2 o
% .:: :. 60 %) ] :.
% g Sesses *OlE g oTel
= coes = cecoes
1.8 2.2 26 1.8 22 2.6
T, LHS [mm] T, LHS [mm]
(a) siby (b) RMSE of Pe.

Figure 12: Most similar simulations to the ref-
erence simulations according to two similarity
estimations. The used color code of simulations is
from Section 3.

the simulations under x = y should be similar to
simulations 30 and 60 and mode +4wv, based on
their stiffness range, while the ones above should
have mode —wv,.

Figure 12a shows that the stfgrt method
achieves the expected clustering, e.g., the modes
stay on one side of the diagonal. On the other
hand, Figure 12b shows that the RMSE of P,
method fails to recognize the crash modes as the
colored points for simulations 30, 31, 60, and 61
are on both sides of the diagonal. This result shows
that this method primarily works by averaging the
energy absorption of the parts.

deviation regarding changing the number of ener-
(C =0.8, weight = P,).

Next, we compare part-based and component-
based results. Figure 13 visualizes the comparison
of the two methods while increasing the num-
ber of target nodes in the bipartite graph,
and (GT})\ for part-based and component-based
methods, respectively. This comparison also high-
lights the deviation between the two methods by
increasing the number of parts.

Additionally, the color coding for the zero
mode deformation, blue scatter points, is captured
the best for the minimum included target nodes,
Figure 13a, 13e. This observation emphasizes that
finding a similar simulation differs from ordering
the similarities. For finding the most similar simu-
lation, including the least number of target nodes
or part-based assessment, perform satisfactorily.
However, from the robustness aspect and the rank-
ing of the prediction, the component-based is more
promising.

7.5 Industrial application

After investigating the SimRank++ method for
the illustrative example, we apply the approach to
data from CEVT, using the so far best-performing
configuration, i.e., SimRankTarget-++. This real-
life industrial data includes a total of 611 simu-
lations of three different load-cases from frontal
impact (ffo: full front overload, foU: front oblique
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(e) 2 Grp

(f)3Grp (g) 5Grp (h) 11 Grp

Figure 13: Comparing relative labeling of
part-based (a)(b)(c)(d) with component-based
(e)(f)(g)(h) while varying the number of and
@ nodes respectively. x-axis, y-axis, and color-
ing are the same as in Figure 12.

overlap, and fol: front small overlap) in four suc-
cessive development stages (primary, early, mid-
dle, and late)!?. For confidentially reasons we
cannot give details about the simulations, but
the presented results still show the capability
and potential application of the proposed analysis
procedure for real development data.

For this data, the bipartite graph is part-
based with as before energy power as the weight
factor, P. = IE,q,/At. The similarity predic-
tion considers each load-case for each development
stage separately for a specified number of parts,
i.e, 20. The load-case separation of simulations
is due to the use-case that similarity between
different load-cases is usually out of interest. Fur-
thermore, the grouping of development stages is
due to PID changes between development stages
to avoid connecting two irrelevant parts. The nec-
essary parts mainly vary between load-cases and
slightly among developmental stages.

Here we present an overview of these results
and deep dive into the result for one load-case in
a single development stage. The industrial data
is unlabeled, so it is challenging to assess the re-
sult of the similarity predictions. To tackle this,
we introduce two approaches. First, we visualize
the similarity prediction result using a histogram
and a kernel density estimation (KDE)!!. Second,

10Detailed data description in Section 3 of [18].
11seaborn‘distplot python package with KDE=True
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Figure 14: s;;;t link prediction histogram and
estimated density for the fol load-case in the
primary stage, CEVT data. (a) ,(b), and (c) high-
lights the three cluster of similarity distributions.

we select specific simulation pairs in each batch
to further analyse the similarity prediction, H-LL
simulations. We present these approaches for the
fol load-case in the primary development stage.

7.5.1 Similarity density

The similarity prediction score depends on the se-
lection of simulations in the batch and the number
of included designs. We use the KDE to visualize
the probability of the data being in a given range
in the area under the density curve. First, we focus
on the similarity predictions for the fol load-case
in the primary development stage when consider-
ing the 20 most energetic parts, Figure 14. The
total number of simulations is 115; consequently,
the number of similarities pairs is 6555. The hori-
zontal axis refers to the predicted similarity score,
whereas the vertical axis reflects the number of
simulation pairs for each value.

A noticeable outcome is that the density of
similarity prediction shapes clusters of simula-
tions. In this way, density clustering detects the
groups of simulations with similar scores of sim-
ilarities. Figure 14 has three clusters at (a), (b),
and (c), where (a) includes mainly the outliers.

Based on that, we claim that the cluster with
only low predicted similarities includes simula-
tions that are outliers, which allows anomaly
detection. To confirm, for the considered fol load-
case during the primary stage, we manually iden-
tified and relatively labeled simulation runs with
early termination due to errors or unrealistic
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high internal energy, respectively. Afterward, we
evaluated the similarity score with and without
these simulations. We observed that the low-range
similarity cluster, i.e., zone (a) in Figure 14, is re-
moved from the density plot when excluding the
outlier simulations. The corresponding similarity
distribution is plotted in Figure 15a.

Figure 15 presents the similarity distribution
for the different load-cases in different develop-
ment stages. Here, we analyse each load-case in
separate development stages. These KDE plots
highlight the differences between each batch, e.g.,
the score range and the number of peaks. To
exclude outliers, each KDE plot is without simu-
lations with a maximal similarity of less than 0.2.
We observe that 0.2 seems low for some batches
to disregard the outliers, e.g., Figure 15a and
15c. Nonetheless, SimRankTarget++ low compu-
tational cost, less than a second, allows users to
run the computation interactively with different
filtering.

In particular cases, the scores spread is small
between simulations, Figures 15e and 15l. The
narrow range can highlight limited exploration of
the designs. Moreover, the singular high density
of similarity prediction is related to the num-
ber of parts included in the similarity calculation,
Figures 15c¢ and 15h.

Like in the illustrative example, a fully-
connected bipartite graph has tighter prediction
scores, and the effect of the weights is not as strong
as the structure. For example, in a group of FE
simulations, a fully bipartite graph means all 20
most energetic parts are the same for all the FE
simulations; however, there is a difference between
them due to the difference in energy distribution.
One approach to extend the deviation of the link
prediction score is to include fewer parts to avoid
having a fully bipartite graph.

7.5.2 H-LL simulations

We propose to compare the energy features [18]
of several simulations to verify the similarity dis-
tances in detail. For that, we select what we call
H-LL edges, where H is the edge with the highest
similarity, that is the nodes H; and Hs, connected
by edge H, are the most similar pair of simulations.
The edge is according to the maximum predicted
score of O— stm_siM —O. In a second step, we select
the corresponding least similar simulations, that is

both Hi-L.; and Hs-Lo, Figure 16. In some cases,
L; and Ly may be the same. We call these H-LL
simulations, and we further investigate the results
with them to assess the reliability of the predicted
similarity.

Table 6 shows a summary of link prediction for
the fol load-case during the primary stage. First,
we consider all the simulations, Table 6a. Each
table row shows the predicted similarity of H-LL
simulations while increasing the number of parts.
For this data set, the graph is disconnected if we
consider less than six most energetic parts. An
additional observation is that the HL similarity
drops after including at least 15 parts in the anal-
ysis. Accordingly, the 15 most energetic parts will
have the highest similarity range, and afterward,
the H-LL pairs are stable.

In a further step, we remove the outlier simu-
lations from cluster (a) in Figure 14. We identify
the H-LL simulations while increasing the num-
ber of parts included in the bipartite graph, Table
6b. Increasing the number of parts keeps the sim-
ilarities range shrinking constantly. Generally, the
selection of parts for the similarity assessment is
a hyperparameter for the user; however, the H-LL
similarities support revealing the differences.

Additionally, we consider a plot using the en-
ergy features for a couple of H-LL simulations.
With the so-called energy scatter plot [18], one
compares the energy features of the most energetic
parts of the simulations, which enables us to visu-
ally assess the similarity of the simulations’ parts
in energy absorption.

We start with the H-LLi, (354 -(387)-(237),
from Table 6a that sj;;t that predicted simula-
tion as least similar. Figure 17a visualizes
the energy features of 20 parts for each of these
three simulations. The plot indicates that simula-
tion has enormous energy in one part, and
the simulation ended earlier, causing it to differ
noticeably in comparison with the other two sim-
ulations. We expected the least similar simulation
to be an outlier, cluster (a) in Figure 14, and this
comparison confirms it.

An initial remark from comparing Table 6a and
6b is that the minimum number of required parts
in the dataset that avoids having a disconnected
graph decreases from six to two, comparing Table
6a and 6b respectively. This drop is an additional
cross-check for verifying the effect of filtering the
outliers.
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Figure 15: KDE plot for stfgrt prediction with 20 most energetic parts in three different load-cases full
front overload(ffo), front oblique overlap (fol), and front small overlap (ffU) in four development stages,
primary, early, middle and late that reflects the sequence of the stage, for more information look in Section
3 of [18]. The simulations with a maximal similarity less than 0.2, and therefore outliers, are removed.
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Figure 16: H-LL simulation schema selected for
each load-case in a development stage based on
similarity prediction score.

Next, we investigate H-LL simulations from
Table 6b excluding the outlier simulations. Here,
we expect to find the clusters (b) and (c) in the
KDE plot, Figure 14. Further comparison of Table
6a and 6b emphasizes that filtered simulations
have the two most energetic parts in common, but
there is a flip in its order that we can not de-
crease it to one part and still have a connected

graph. Consequently, there is a bifurcation in the
behavior of the simulations.

In Table 6b, increasing the number of parts
does not settle in one H-LL simulations group,
whereas in Table 6a occurs after 15 parts. How-
ever, in Table 6b, a trend is observed in H-LL
simulations. These groups are marked in Table 6b
as H-LLs, H-LL3, H-LL,4, they include simulations
(350)-(387-17), (A-(7-(380), and ()-(7-(358), Te-
spectively. The first and second sets H-LL, and
H-LL3 do not overlap in simulations; however,
H-LL4 contains HH simulations of H-LLs and
H-LL3. This observation underlines that two be-
havior trends are dominant and have a detectable
distance from each other.

We look into the energy features scatterplots
of these simulations to verify our assumptions.
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21
No. Parts H; Ho Ly Lo H{H> HL, HLo
6 008 018 386 386 0.486 0.295 0.291
10 004 007 090 090 0.438 0.287 0.294
14 353 354 090 090 0.409 0.266 0.253
15 354 387 237 237 0.401  0.002 0.002
16 354 387 237 237 0.388 0.002 0.002
*20 354 387 237 237 0.364 0.003 0.003

* H-LL;, Figure 17a

(a) All simulations, cluster

(a), (b), and (c) in Figure 14

No. Parts Hj Ho Ly Lo H{H> HL, HLo
2 195 197 354 354 0.477 0.113 0.112

4 354 387 197 197 0.455 0.108 0.123

5 135 197 021 021 0.485 0.236 0.237

6 135 190 287 287 0.492 0.304 0.307

8 354 385 028 028 0.468 0.322 0.346

10 354 357 028 017 0.453 0.340 0.358

12 004 007 287 287 0.442 0.369 0.370
***14 004 007 354 354 0.427 0.375 0.376
16 354 387 017 021 0.405 0.344 0.350
**18 004 007 287 287 0.389 0.349 0.349
*20 354 387 017 017 0.377 0.321 0.331

* H-LLs, Figure 17b
** H-LLg3, Figure 17c

*** H-LLy4, Figure 17d

(b) Excluding outliers, cluster (b), and (c) in Figure 14

Table 6: The H-LL simulations id and their similarities, s}

CEVT data.
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Figures 17b, 17¢c, and 17d plot energy scatterplats
of these simulations for H-LLo, H-LL3, and H-
LL4 respectively. In Figures 17b and 17c, we see
that parts of HH simulations are nearby (blue and
green markers), whereas L simulation points are
further away (red marker). Furthermore, Figure
17d proves the distance between HH of H-LL, and
H-LLs3. Here we can see that the difference is not as
noticeable as H-LL, and H-LLj3; parts with lower
energy become dominant in similarity prediction
if we increase the number of parts.

8 Application Perspective

In this work, we introduced searchability to the
CAE domain, improving the engineering workflow
by enabling efficient discovery and comparison of
simulation data. Figure 18 illustrates the work-
flow for engineers, as a discovery platform, who
wish to use searchability in their projects. Using
this approach, engineers can select a specific part
of a vehicle or analysis to obtain a ranked list of
simulations based on their similarities. This capa-
bility provides several practical benefits to their
analyses, including:
¢* Find the same performance with a
different design using high similarity
simulations. Engineers can identify alterna-
tive designs that achieve similar performance
metrics, enabling more innovative solutions
and potentially more cost-effective alterna-
tives. For example, if an engineer is op-
timizing a car door design, they can find
alternative designs that meet the same safety
standards but may offer other benefits such
as reduced weight or cost.
¢ Evaluate the robustness of a design by
considering the spread of simulation
similarity scores. By analyzing the varia-
tion in similarity scores, engineers can assess
how consistent the performance of a design
is under different conditions or assumptions,
thereby evaluating its robustness. For exam-
ple, when analyzing the crashworthiness of
a vehicle, engineers can assess how minor
design changes affect overall performance, en-
suring that the design remains robust under
different conditions.
¢ Identify unreliable simulation analysis
with a low simulation similarity score.
Simulations that deviate significantly from

others can be flagged for further investiga-
tion, helping to identify potential errors or
unreliable data.

¢ Cluster simulations based on the distri-
bution of their similarity scores. Clus-
tering similar simulations can reveal patterns
and relationships within the data, helping
to understand how different factors influence
performance. This clustering can help engi-
neers understand the relationships between
different designs and identify trends or com-
mon characteristics among high performing
designs.

In summary, controlling the variation of struc-
tural properties is a fundamental task in the
design of lightweight structures. This is especially
critical when applying deterministic structural
optimization methods, such as topology optimiza-
tion, to individual components or entire struc-
tures. The presented searchability method not
only supports the discovery of similar simulations,
but also helps to manage these variations, ulti-
mately contributing to more effective and efficient
structural design and optimization processes.

In addition, we have introduced the use of
KDE and the H-LL to visualize and summarize the
differences across a large number of simulations.
These visualizations play a critical role in the
practical CAE process by providing an intuitive
and interactive discovery platform. Engineers can
actively select input simulations from the KDE
distribution and validate these clusters against
the H-LL simulations. This interactive approach
allows for more detailed and focused analysis.

For a practical CAE process, the discov-
ery platform allows engineers to adjust hyper-
parameters such as the number of parts included
or which specific parts are included in the simi-
larity evaluations. This flexibility allows users to
customize the focus of the comparison to suit their
specific interests and needs. In addition, the plat-
form supports the integration of human feedback,
which is an essential requirement for the improve-
ment of data labelling for further enhancement of
method development.

Given the novelty of predicting simulation sim-
ilarity and the lack of labeled data, these types
of visualizations are essential for evaluating the
similarity results. They facilitate the integration
of the proposed method into the CAE workflow,
enabling the collection of valuable feedback from
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Figure 18: User workflow for simulations searchability. Engineers can select specific vehicle parts or
analyses to obtain ranked lists of simulations based on similarity scores, aiding in design comparison,
robustness evaluation, detection of unreliable simulations, and trend identification, crucial for optimizing

structures.

engineers. The integration of these methods into
CAE processes is a critical requirement for future
improvements using graph analysis. This holistic
approach ensures that the methodology evolves
with practical insights and real-world applica-
tions, driving continuous improvement in the field
of CAE.

9 Conclusion and Outlook

Today, the searchability of the web is an obvious
benefit for everyone. However, enhanced searcha-
bility still needs to be realized in the CAE domain,
where its advantages need to be demonstrated
to the engineers. For example, it enables multi-
disciplinary collaboration by easing the finding of
data within the team and across the company,
which increases efficient problem-solving. More-
over, it allows different interconnecting solutions
for the same problem and highlights unexplored
solutions.

In the context of crash simulation searcha-
bility, we focused on predicting the similarity of
simulations and a corresponding ranking. Regard-
less, enhanced searchability will also bring benefit
to other CAE domains and other semantics of

a domain, e.g., design features, cause and effect
analyses, modeling techniques, discipline require-
ments, and project decisions.

In this work, the case study is in front crash
simulations and other load-cases and CAE do-
mains are beyond the scope of this work. For
other crash load-cases, the same semantics are rec-
ommended; however, introducing new illustrative
data for assessment of the method is required.
Additionally, other domains require introducing
the semantics that characterize the analysis’s me-
chanical properties, e.g., high strain elements for
fatigue analysis and eigenmodes structural fre-
quencies for noise-vibration-harshness analysis.

Our graph modeling results in a heterogeneous
graph and we need to consider unsupervised learn-
ing. To be able to use SimRank-style methods, the
only method we found suitable in our scenario,
we extracted a bipartite-weighted graph. Addi-
tionally, we introduced an alternative weight nor-
malization for SimRank++. We could show that
this works better for our addressed application of
predicting the similarity of crash simulations and
the corresponding ranking of simulations, shown
on a constructed illustrative example with relative
labels.
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Furthermore, we compared similarity predic-
tions using part-based and component-based ap-
proaches. Here we introduced an automatic ap-
proach to group the parts and combine the
features. While the overall outcome for part-
based and component-based similarity is close,
the component-based similarity provides a more
stable prediction, whereas the part-based similar-
ity is a more sensitive technique. Consequently,
we recommend component-based similarity in par-
tial comparison of simulations and part-based for
complete model comparison.

On industrial data, we could show that our
methods scale up to real data scenarios. Overall,
we could verify the simulation similarity pre-
diction, while the data representations showed
promise for outlier detection and clustering of
simulations based on similarity score distribution.

In order to improve the graph-based search ca-
pabilities within the CAE domain, future work
should focus on the extension of the graph model.
This can be achieved by the incorporation of quan-
tified physical parameters, which are relevant for
each specific CAE domain, as new weighted fea-
tures of the edges. This is similar, for example,
to the incorporation of energy features in crash
simulation.

Furthermore, one can consider quantifying the
input designs and including more outputs of the
simulations. Design features support further link
prediction tasks such as the similarity of the FE-
models’ inputs or cause-effect relations that in-
terconnect the input designs and output features.
However, including more simulation outcomes will
also require a feature embedding to combine the
features or aim for a SimRank formulation with
multi-edge weights.

Additionally, extending applications of graph
analytics methods for domain-specific demands
will assist cross-domain solutions. Including the
multidisciplinary requirements as the search ob-
ject will support ranking the cross-discipline so-
lutions. Another step to enhance searchability is
to improve the data labeling to leverage result
assessment. Enhanced graph models with larger
numbers of simulations stored would also allow
applying graph neural networks in this domain.

One approach for improving data labeling is
the integration of the current method in com-
panies as a dynamic report platform to collect

feedback from engineers, e.g., CAEWebVis'? in-
troduced in [18]. Only with feedback on the
predicted similarities from engineers can one envi-
sion a transferring of the unlabeled CAE data to
labeled data. Such labeling will open up new pos-
sibilities to empower further ML solutions, e.g.,
graph neural networks. To allow further investiga-
tion of graph analytics for the CAE process, we
release our illustrative example, the databases and
the source code with a user tutorial'3.

The S;Jg“t method presented has significant po-
tential, which would benefit from a benchmark
study to evaluate its performance in different ap-
plications. Unfortunately, our current work has
focused specifically on crash simulation similar-
ity, so such an evaluation is beyond the scope of
this study. Nevertheless, we recommend applying
the sz;;rt method to any bipartite weighted graph
where the relationships between nodes represent a
O—— PART.OF —O concept. In these scenarios, the
weight distribution between entities in different
groups is more relevant for similarity judgments
than the distributions within groups. The rea-
son for recommending the use of sz;;t is that its
semantic comparison in normalization preserves
minor changes in each semantic during similarity
evaluation. Simultaneously, s;;;t’s evidence factor
accounts for each semantic’s importance in the
overall similarity calculation. To our knowledge,
the theoretical investigation focussed so far on
SimRank, in particular in view of approximation
for large scale application. The presented matrix
formulation could allow further investigation on
SimRank++, also in view of the random walk
interpretation of SimRank [2, 12, 24].

This method could be particularly useful for
other automotive analyses beyond safety, such as
noise, vibration and harshness (NVH), durabil-
ity and computational fluid dynamics (CFD). In
NVH studies, for example, the method can be used
to compare the vibrational behavior of vehicle
components across different design iterations, en-
abling engineers to identify and minimize sources
of unwanted noise and vibration early in the de-
sign process. Similarly, in durability analysis, the
method can be used to compare the long-term
performance and reliability of different design ver-
sions, helping to develop more robust and resilient

12 Accessible at CAEWebVis.scai.fraunhofer.de/.
13;;11 hub.com/Fraunhofer-SCAI/GAE-vehicle-safety.
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automotive parts. In CFD, it can help compare
the aerodynamic and thermal performance of dif-
ferent design configurations, optimizing for better
fuel efficiency and thermal management.

In addition, we suggest exploring the use
of s;;;t in other domains in view of its ap-
plicability. For example, it could be applied
to document comparison, such as comparing
sections of different document versions (e.g.
PART_OF — document ), which facilitates
tracking changes and improvements in technical
documentation. In software engineering, it can be
used to compare code modules within packages
(e.g. (module )~ PART_OF —{ package )), aiding version
control and ensuring consistency and compatibil-
ity between software updates. These use cases
demonstrate how the method can be generalized
as a powerful tool for version control, effectively
conveying the same semantics across different ver-
sions - be they sections in documents, modules in
software packages, or parts in vehicles. This cross-
disciplinary application highlights the potential of
the method for process streamlining and accuracy
improvement in a wide range of fields.
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