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Summary. New regulations and stronger competitions have increased the demand
for stochastic asset-liability management (ALM) models for insurance companies in
recent years. In this article, we propose a discrete time ALM model for the simula-
tion of simplified balance sheets of life insurance products. The model incorporates
the most important life insurance product characteristics, the surrender of contracts,
a reserve-dependent bonus declaration, a dynamic asset allocation and a two-factor
stochastic capital market. All terms arising in the model can be calculated recur-
sively which allows an easy implementation and efficient evaluation of the model
equations. The modular design of the model permits straightforward modifications
and extensions to handle specific requirements. In practise, the simulation of stochas-
tic ALM models is usually performed by Monte Carlo methods which suffer from
relatively low convergence rates and often very long run times, though. As alterna-
tives to Monte Carlo simulation, we here propose deterministic integration schemes,
such as quasi-Monte Carlo and sparse grid methods for the numerical simulation of
such models. Their efficiency is demonstrated by numerical examples which show
that the deterministic methods often perform much better than Monte Carlo simu-
lation as well as by theoretical considerations which show that ALM problems are
often of low effective dimension.

1 Introduction

The scope of asset-liability management is the responsible administration of
the assets and liabilities of insurance contracts. Here, the insurance company
has to attain two goals simultaneously. On the one hand, the available capital
has to be invested as profitably as possible (asset management), on the other
hand, the obligations against policyholders have to be met (liability man-
agement). Depending on the specific insurance policies these obligations are
often quite complex and can include a wide range of guarantees and option-
like features, like interest rate guarantees, surrender options (with or without
surrender fees) and variable reversionary bonus payments. Such bonus pay-
ments are typically linked to the investment returns of the company. Thereby,
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the insurance company has to declare in each year which part of the invest-
ment returns is given to the policyholders as reversionary bonus, which part
is saved in a reserve account for future bonus payments and which part is kept
by the shareholders of the company. These management decisions depend on
the financial situation of the company as well as on strategic considerations
and legal requirements. A maximisation of the shareholders’ benefits has to
be balanced with a competitive bonus declaration for the policyholders. More-
over, the exposure of the company to financial, mortality and surrender risks
has to be taken into account. These complex problems are investigated with
the help of ALM analyses. In this context, it is necessary to estimate the
medium- and long-term development of all assets and liabilities as well as the
interactions between them and to determine their sensitivity to the different
types of risks. This can either be achieved by the computation of particular
scenarios (stress tests) which are based on historical data, subjective expec-
tations, and guidelines of regulatory authorities or by a stochastic modelling
and simulation. In the latter case, numerical methods are used to simulate a
large number of scenarios according to given distribution assumptions which
describe the possible future developments of all important variables, e.g. of
the interest rates. The results are then analysed using statistical figures which
illustrate the expected performance or the risk profile of the company.

In recent years, such stochastic ALM models for life insurance policies
are becoming more and more important as they take financial uncertainties
more realistically into account than an analysis of a small number of deter-
ministically given scenarios. Additional importance arises due to new regula-
tory requirements as Solvency II and the International Financial Reporting
Standard (IFRS). Consequently, much effort has been spent on the develop-
ment of these models for life insurance policies in the last years, see, e.g.,
[2, 4, 7, 13, 19, 24, 33] and the references therein. However, most of the ALM
models described in the existing literature are based on very simplifying as-
sumptions in order to focus on special components and effects or to obtain
analytical solutions. In this article, we develop a general model framework for
the ALM of life insurance products. The complexity of the model is chosen
such that most of the models previously proposed in the literature and the
most important features of life insurance product management are included.
All terms arising in the model can be calculated recursively which allows an
straightforward implementation and efficient evaluation of the model equa-
tions. Furthermore, the model is designed to have a modular organisation
which permits straightforward modifications and extensions to handle specific
requirements.

In practise, usually Monte Carlo methods are used for the stochastic sim-
ulation of ALM models. These methods are robust and easy to implement but
suffer from their relatively low convergence rates. To obtain one more digit ac-
curacy, Monte Carlo methods need the simulation of a hundred times as many
scenarios. As the simulation of each scenario requires a run over all time points
and all policies in the portfolio of the company, often very long run times are
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needed to obtain approximations of satisfactory accuracy. As a consequence, a
more frequent and more comprehensive risk management, extensive sensitiv-
ity investigations or the optimisation of product parameters and management
rules are often not possible. In this article we propose deterministic numerical
integration schemes, such as quasi-Monte Carlo methods (see e.g. [37, 22, 40])
and sparse grid methods (see, e.g., [9, 15, 16, 23, 38, 42]) for the numerical
simulation of ALM models. These methods are alternatives to to Monte Carlo
simulation, which have a faster rate of convergence, exploit the smoothness
and the anisotropy of the integrand and have deterministic upper bounds on
the error. In this way, they often can significantly reduce the number of re-
quired scenarios and computing times as we show by numerical experiments.
The performance of these numerical methods is closely related to the effec-
tive dimension and the smoothness of the problem under consideration. Here,
we show that ALM problems are often of very low effective dimension (in
the sense that the problem can well be approximated by sums of very low-
dimensional functions) which can, to some extent, explain the efficiency of
the deterministic methods. Numerical results based on a general ALM model
framework for participating life insurance products demonstrate that these
deterministic methods in fact often perform much better than Monte Carlo
simulation even for complex ALM models with many time steps. Quasi-Monte
Carlo methods based on Sobol sequences and dimension-adaptive sparse grids
based on one-dimensional Gauss-Hermite quadrature formulae turn out to be
the most efficient representatives of several quasi-Monte Carlo and sparse grid
variants, respectively. For further details, see [17, 18, 19].

The remainder of this article is as follows: In Section 2, we describe the
model framework. In Section 3, we then discuss how this model can be effi-
ciently simulated by numerical methods for multivariate integration. In Sec-
tion 4, we present numerical results which illustrate possible application of
the ALM model and analyse the efficiency of different numerical approaches.
The article finally closes in Section 5 with concluding remarks.

2 The ALM Model

In this section, we closely follow [19] and describe an ALM model framework
for the simulation of the future development of a life insurance company. We
first indicate the overall structure of the model and introduce a simplified
balance sheet which represents the assets and liabilities of the company. The
different modules (capital market model, liability model, management model)
and the evolution of the balance sheet items are then specified in the following
sections.

2.1 Overall Model Structure

The main focus of our model is to simulate the future development of all assets
and liabilities of a life insurance company. To this end, the future develop-
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ment of the capital markets, the policyholder behaviour and the company’s
management has to be modelled. We use a stochastic capital market model, a
deterministic liability model which describes the policyholder behaviour and
a deterministic management model which is specified by a set of management
rules which may depend on the stochastic capital markets. The results of the
simulation are measured by statistical performance and risk figures which are
based on the company’s most important balance sheet items. They are used
by the company to optimise management rules, like the capital allocation, or
product parameters, like the surrender fee. The overall structure of the model
is illustrated in Fig. 1.

Fig. 1. Overall structure of the ALM model.

We model all terms in discrete time. Here, we denote the start of the
simulation by time t = 0 and the end of the simulation by t = T (in years).
The interval [0, T ] is decomposed into K periods [tk−1, tk] with tk = k ∆t,
k = 1, . . . ,K and a period length ∆t = T/K of one month.

The asset side consists of the market value Ck of the company’s assets at
time tk. On the liability side, the first item is the book value of the actuarial
reserve Dk, i.e., the guaranteed savings part of the policyholders after deduc-
tion of risk premiums and administrative costs. The second item is the book
value of the allocated bonuses Bk which constitute the part of the surpluses
that have been credited to the policyholders via the profit participation. The
free reserve Fk is a buffer account for future bonus payments. It consists of
surpluses which have not yet been credited to the individual policyholder
accounts, and is used to smooth capital market oscillations and to achieve
a stable and low-volatile return participation of the policyholders. The last
item, the equity or company account Qk, consists of the part of the surpluses
which is kept by the shareholders of the company and is defined by

Qk = Ck −Dk −Bk − Fk

such that the sum of the assets equals the sum of the liabilities. Similar to
the bonus reserve in [24], Qk is a hybrid determined as the difference between
a market value Ck and the three book values Dk, Bk and Fk. It may be
interpreted as hidden reserve of the company as discussed in [29]. The balance
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sheet items at time tk, k = 0, . . . ,K, used in our model are shown in Table
1. In a sensitivity analysis for sample parameters and portfolios it is shown in

Assets Liabilities

Capital Ck Actuarial reserve Dk

Allocated bonus Bk

Free reserve Fk

Equity Qk

Table 1. Simplified balance sheet of the life insurance company.

[19] that this model captures the most important behaviour patterns of the
balance sheet development of life insurance products. Similar balance sheet
models have already been considered in, e.g., [2, 3, 24, 33, 29].

2.2 Capital Market Model

We assume that the insurance company invests its capital either in fixed
interest assets, i.e., bonds, or in a variable return asset, i.e., a stock or a
basket of stocks. For the modelling of the interest rate environment we use
the Cox-Ingersoll-Ross (CIR) model [11]. The CIR model is a one-factor mean-
reversion model which specifies the dynamics of the short interest rate r(t) at
time t by the stochastic differential equation

dr(t) = κ(θ − r(t))dt +
√

r(t)σrdWr(t), (1)

where Wr(t) is a standard Brownian motion, θ > 0 denotes the mean reversion
level, κ > 0 denotes the reversion rate and σr ≥ 0 denotes the volatility of
the short rate dynamic. In the CIR model, the price b(t, τ) at time t of a
zero coupon bond with a duration of τ periods and with maturity at time
T = t + τ∆t can be derived in closed form by

b(t, τ) = A(τ) e−B(τ) r(t) (2)

as an exponential affine function of the prevailing short interest rate r(t) with

A(τ) =
(

2he(κ̂+h)τ∆t/2

2h + (κ̂ + h)(ehτ∆t − 1)

)2κθ/σ2
r

, B(τ) =
2(ehτ∆t − 1)

2h + (κ̂ + h)(ehτ∆t − 1)
,

and h =
√

κ̂2 + 2σ2
r . To model the stock price uncertainty, we assume that the

stock price s(t) at time t evolves according to a geometric Brownian motion

ds(t) = µs(t)dt + σss(t)dWs(t), (3)

where µ ∈ R denotes the drift rate and σs ≥ 0 denotes the volatility of the
stock return. By Itô’s lemma, the explicit solution of this stochastic differential
equation is given by
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s(t) = s(0) e(µ−σ2
s/2)t+σsWs(t). (4)

Usually, stock and bond returns are correlated. We thus assume that the two
Brownian motions satisfy dWs(t)dWr(t) = ρdt with a constant correlation
coefficient ρ ∈ [−1, 1]. These and other models which can be used to simulate
the bond and stock prices are discussed in detail, e.g., in [6, 25, 28].

In the discrete time case, the short interest rate, the stock prices and the
bond prices are defined by rk = r(tk), sk = s(tk) and bk(τ) = b(tk, τ). For the
solution of equation (1), we use an Euler-Maruyama discretization3 with step
size ∆t, which yields

rk = rk−1 + κ(θ − rk−1)∆t + σr

√
|rk−1|

√
∆t ξr,k, (5)

where ξr,k is a N(0, 1)-distributed random variable. For the stock prices one
obtains

sk = sk−1e
(µ−σ2

s/2)∆t+σs

√
∆t(ρξr,k+

√
1−ρ2ξs,k), (6)

where ξs,k is a N(0, 1)-distributed random variable independent of ξr,k. Since

Cov(ρξr,k +
√

1− ρ2ξs,k, ξr,k) = ρ,

the correlation between the two Wiener processes Ws(t) and Wr(t) is re-
spected. More information on the numerical solution of stochastic differential
equations can be found, e.g., in [22, 30].

2.3 Management Model

In this section, we discuss the capital allocation, the bonus declaration mech-
anism and the shareholder participation.

Capital allocation

We assume that the company rebalances its assets at the beginning of each
period. Thereby, the company aims to have a fixed portion β ∈ [0, 1] of its
assets invested in stocks, while the remaining capital is invested in zero coupon
bonds with a fixed duration of τ periods. We assume that no bonds are sold
before their maturity. Let Pk be the premium income at the beginning of
period k and let Ck−1 be the total capital at the end of the previous period.
The part Nk of Ck−1 + Pk which is available for a new investment at the
beginning of period k is then given by

3 An alternative to the Euler-Maruyama scheme, which is more time consuming
but avoids time discretization errors, is to sample from a noncentral chi-squared
distribution, see [22]. In addition, several newer approaches exist to improve the
balancing of time and space discretization errors, see, e.g., [20]. This and the time
discretization error are not the focus of this article, though.
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Nk = Ck−1 + Pk −
τ−1∑
i=1

nk−i bk−1(τ−i),

where nj denotes the number of zero coupon bonds which were bought at
the beginning of period j. The capital Ak which is invested in stocks at the
beginning of period k is then determined by

Ak = max{min{Nk, β(Ck−1 + Pk)}, 0} (7)

so that the side conditions 0 ≤ Ak ≤ β(Ck−1+Pk) are satisfied. The remaining
money Nk − Ak is used to buy nk = (Nk − Ak)/bk−1(τ) zero coupon bonds
with duration τ∆t.4 The portfolio return rate pk in period k resulting from
the above allocation procedure is then determined by

pk =

(
∆Ak +

τ−1∑
i=0

nk−i ∆bk,i

)
/(Ck−1 + Pk), (8)

where ∆Ak = Ak(sk/sk−1−1) and ∆bk,i = b(tk, τ−i−1)−b(tk−1, τ−i) denote
the changes of the market values of the stock and of the bond investments
from the beginning to the end of period k, respectively.

Bonus declaration

In addition to the fixed guaranteed interest, a variable reversionary bonus is
annually added to the policyholder’s account, which allows the policyholder
to participate in the investment returns of the company (contribution prin-
ciple). The bonus is declared by the company at the beginning of each year
(principle of advance declaration) with the goal to provide a low-volatile, sta-
ble and competitive return participation (average interest principle). Various
mathematical models for the declaration mechanism are discussed in the lit-
erature. In this article, we follow the approach of [24] where the declaration
is based on the current reserve rate γk−1 of the company, which is defined in
our framework by the ratio of the free reserve to the allocated liabilities, i.e.,

γk−1 =
Fk−1

Dk−1 + Bk−1
.

The annual interest rate is then defined by

ẑk = max{ẑ, ω(γk−1 − γ)}.

Here, ẑ denotes the annual guaranteed interest rate, γ ≥ 0 the target reserve
rate of the company and ω ∈ [0, 1] the distribution ratio or participation

4 Note that due to long-term investments in bonds it may happen that Nk < 0.
This case of insufficient liquidity leads to nk < 0 and thus to a short selling of
bonds.
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coefficient which determines how fast excessive reserves are reduced. This way,
a fixed fraction of the excessive reserve is distributed to the policyholders if the
reserve rate γk−1 is above the target reserve rate γ while only the guaranteed
interest is paid in the other case. In our model this annual bonus has to be
converted into a monthly interest

zk =
{

(1 + ẑk)1/12 − 1 if k mod 12 = 1
zk−1 otherwise

which is given to the policyholders in each period k of this year.

Shareholder participation

Excess returns pk−zk, conservative biometry and cost assumptions as well as
surrender fees lead to a surplus Gk in each period k which has to be divided
among the free reserve Fk and the equity Qk. In case of a positive surplus,
we assume that a fixed percentage α ∈ [0, 1] is saved in the free reserve while
the remaining part is added to the equity account. Here, a typical assumption
is a distribution according to the 90/10-rule which corresponds to the case
α = 0.9. If the surplus is negative, we assume that the required capital is
taken from the free reserve. If the free reserves do not suffice, the company
account has to cover the remaining deficit. The free reserve is then defined by

Fk = max{Fk−1 + min{Gk, α Gk}, 0}. (9)

The exact specification of the surplus Gk and the development of the equity
Qk is derived in Section 2.5.

2.4 Liability Model

In this section, we discuss the modelling of the decrement of policies due to
mortality and surrender and the development of the policyholder’s accounts.

Decrement model

For efficiency, the portfolio of all insurance contracts is often represented by a
reduced number m of model points. Each model point then represents a group
of policyholders which are similar with respect to cash flows and technical
reserves, see, e.g., [27]. By pooling, all contracts of a model point expire at
the same time which is obtained as the average of the individual maturity
times.

We assume that the development of mortality and surrender is given de-
terministically and modelled using experience-based decrement tables. Let qi

k

and ui
k denote the probabilities that a policyholder of model point i dies or

surrenders in the k-th period, respectively. The probabilities qi
k typically de-

pend on the age, the year of birth and the gender of the policyholder while ui
k
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often depends on the elapsed contract time. Let δi
k denote the expected num-

ber of contracts in model point i at the end of period k. Then, this number
evolves over time according to

δi
k =

(
1− qi

k − ui
k

)
δi
k−1. (10)

We assume that no new contracts evolve during the simulation.

Insurance products

In the following, we assume that premiums are paid at the beginning of a
period while benefits are paid at the end of the period. Furthermore, we
assume that all administrative costs are already included in the premium. For
each model point i = 1, . . . ,m, the guaranteed part of the insurance product
is defined by the specification of the following four characteristics:

• premium characteristic: (P i
1, . . . , P

i
K) where P i

k denotes the premium of
an insurance holder in model point i at the beginning of period k if he is
still alive at that time.

• survival benefit characteristic: (Ei,G
1 , . . . , Ei,G

K ) where Ei,G
k denotes the

guaranteed payments to an insurance holder in model point i at the end
of period k if he survives period k.

• death benefit characteristic: (T i,G
1 , . . . , T i,G

K ) where T i,G
k denotes the guar-

anteed payment to an insurance holder in model point i at the end of
period k if he dies in period k.

• surrender characteristic: (Si,G
1 , . . . , Si,G

K ) where Si,G
k denotes the guaran-

teed payment to an insurance holder in model point i at the end of period
k if he surrenders in period k.

The bonus payments of the insurance product to an insurance holder in
model point i at the end of period k in case of survival, death and surrender,
are denoted by Ei,B

k , T i,B
k and Si,B

k , respectively. The total payments Ei
k, T i

k

and Si
k to a policyholder of model point i at the end of period k in case of

survival, death and surrender are then given by

Ei
k = Ei,G

k + Ei,B
k , T i

k = T i,G
k + T i,B

k and Si
k = Si,G

k + Si,B
k . (11)

The capital of a policyholder of model point i at the end of period k is
collected in two accounts: the actuarial reserve Di

k for the guaranteed part
and the bonus account Bi

k for the bonus part. Both accounts can efficiently
be computed in our framework using the recursions

Di
k =

1 + z

1− qi
k

(Di
k−1 + P i

k)− Ei,G
k − qi

k

1− qi
k

T i,G
k (12)

and

Bi
k =

1 + zk

1− qi
k

Bi
k−1 +

zk − z

1− qi
k

(Di
k−1 + P i

k)− Ei,B
k − qi

k

1− qi
k

T i,B
k (13)

which results from the deterministic mortality assumptions, see, e.g., [2, 46].
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Example 1. As a sample insurance product, an endowment insurance with
death benefit, constant premium payments and surrender option is considered.
Let P i denote the constant premium which is paid by each of the policyholders
in model point i in every period. If they are still alive, the policyholders receive
a guaranteed benefit Ei,G and the value of the bonus account at maturity di.
In case of death prior to maturity, the sum of all premium payments and the
value of the bonus account is returned. In case of surrender, the policyholder
capital and the bonus is reduced by a surrender factor ϑ = 0.9. The guaranteed
components of the four characteristics are then defined by

P i
k = P i, Ei,G

k = χk(di) Ei,G, T i,G
k = k P i and Si,G

k = ϑDi
k,

where χk(di) denotes the indicator function which is one if k = di and zero
otherwise. The bonus payments at the end of period k are given by

Ei,B
k = χk(di)Bi

k, T i,B
k = Bi

k and Si,B
k = ϑ Bi

k.

We will return to this example in Section 3.

2.5 Balance Sheet Model

In this section, we derive the recursive development of all items in the simpli-
fied balance sheet introduced in Section 2.1.

Projection of the assets

In order to define the capital Ck at the end of period k, we first determine
the cash flows which are occurring to and from the policyholders in our model
framework. The premium Pk, which is obtained by the company at the be-
ginning of period k, and the survival payments Ek, the death payments Tk,
and the surrender payments Sk to policyholders, which take place at the end
of period k, are obtained by summation of the individual cash flows (11), i.e.,

Pk =
m∑

i=1

δi
k−1 P i

k, Ek =
m∑

i=1

δi
k Ei

k, Tk =
m∑

i=1

qi
kδi

k−1 T i
k, Sk =

m∑
i=1

ui
kδi

k−1 Si
k,

(14)
where the numbers δi

k are given by (10). The capital Ck is then recursively
given by

Ck = (Ck−1 + Pk) (1 + pk)− Ek − Tk − Sk (15)

where pk is the portfolio return rate defined in equation (8).

Projection of the liabilities

The actuarial reserve Dk and the allocated bonus Bk are derived by summa-
tion of the individual policyholder accounts (12) and (13), i.e.,
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Dk =
m∑

i=1

δi
k Di

k and Bk =
m∑

i=1

δi
k Bi

k.

In order to define the free reserve Fk, we next determine the gross surplus Gk in
period k which consists in our model of interest surplus and surrender surplus.
The interest surplus is given by the difference between the total capital market
return pk (Fk−1 + Dk−1 + Bk−1 + Pk) on policyholder capital and the interest
payments zk (Dk−1 + Bk−1 + Pk) to policyholders. The surrender surplus is
given by Sk/ϑ− Sk. The gross surplus in period k is thus given by

Gk = pk Fk−1 + (pk − zk) (Dk−1 + Bk−1 + Pk) + (1/ϑ− 1)Sk.

The free reserve Fk is then derived using equation (9). Altogether, the com-
pany account Qk is determined by

Qk = Ck −Dk −Bk − Fk.

Note that the cash flows and all balance sheet items are expected values with
respect to our deterministic mortality and surrender assumptions from Section
2.4, but random numbers with respect to our stochastic capital market model
from Section 2.2.

Performance figures

To analyse the results of a stochastic simulation, statistical measures are con-
sidered which result from an averaging over all scenarios. Here, we consider
the path-dependent cumulative probability of default

PDk = P
(

min
j=1,...,k

Qj < 0
)

as a measure for the risk while we use the expected future value E[Qk] of
the equity as a measure for the investment returns of the shareholders in the
time interval [0, tk]. Due to the wide range of path-dependencies, guarantees
and option-like features of the insurance products and management rules,
closed-form representations for these statistical measures are in general not
available so that one has to resort to numerical methods. It is straightforward
to include the computation of further performance and risk measures like the
variance, the value-at-risk, the expected shortfall or the return on risk capital.
To determine the sensitivity f ′(v) = ∂f(v)/∂v of a given performance figure
f to one of the model parameters v, finite difference approximations or more
recent approaches, like, e.g., smoking adjoints [21], can be employed.

3 Numerical Simulation

In this section, we discuss the efficient numerical simulation of the ALM model
described in Section 2. The number of operations for the simulation of a sin-
gle scenario of the model is of order O(m ·K) and takes about 0.04 seconds
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on a dual Intel(R) Xeon(TM) CPU 3.06GH workstation for a representative
portfolio with m = 500 model points and a time horizon of K = 120 periods.
The number of scenarios which have to be generated depends on the accu-
racy requirements, on the model parameters5 and on the employed numerical
method. In the following, we first rewrite the performance figures of the model
as high-dimensional integrals. Then, we survey numerical methods which can
be applied to their computation, discuss their dependence on the effective di-
mension and review techniques which can reduce the effective dimension in
certain cases.

3.1 Representation as High-Dimensional Integrals

It is helpful to represent the performance figures of the ALM simulation as
high-dimensional integrals to see how more sophisticated methods than Monte
Carlo simulation can be used for their numerical computation. To derive
such a representation, recall that the simulation of one scenario of the ALM
model is based on 2K independent normally distributed random numbers
y = (y1, . . . , y2K) = (ξs,1, . . . , ξs,K , ξr,1, . . . , ξr,K) ∼ N(0,1). These numbers
specify the stock price process (6) and the short rate process (5). Then, the
term structure, the asset allocation, the bonus declaration, the shareholder
participation and the development of all involved accounts can be derived us-
ing the recursive equations of the previous sections. Altogether, the balance
sheet items CK , BK , FK and QK at the end of period K can be regarded
as (usually very complicated) deterministic functions CK(y), BK(y), FK(y),
QK(y) depending on the normally distributed vector y ∈ IR2K . As a conse-
quence, the expected values of the balance sheet items at the end of period
K can be represented as 2 K-dimensional integrals, e.g.,

E[QK ] =
∫

IR2K

QK(y)
e−yT y/2

(2π)K
dy (16)

for the equity account. Often, monthly discretizations of the capital market
processes are used. Then, typical values for the dimension 2K range from
60− 600 depending on the time horizon of the simulation.

Transformation

The integral (16) can be transformed into an integral over the 2K-dimensional
unit cube which is often necessary to apply numerical integration methods.
By the substitution yi = Φ−1(xi) for i = 1, . . . , 2K, where Φ−1 denotes the
inverse cumulative normal distribution function, we obtain

E[QK ] =
∫

IR2K

QK(y)
e−yT y/2

(2π)K
dy =

∫
[0,1]d

f(x) dx (17)

5 The model parameters affect important numerical properties of the model, e.g.
the effective dimension (see Section 3.3) or the smoothness.
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with d = 2K and f(x) = Qk(Φ−1(x)). For the fast computation of Φ−1(xi),
we use Moro’s method [35]. Note that the integrand (17) is unbounded on
the boundary of the unit cube, which is undesirable from a numerical as well
as theoretical point of view. Note further that different transformations to
the unit cube exist (e.g. using the logistic distribution or polar coordinates)
and that also numerical methods exist which can directly be applied to the
untransformed integral (16) (e.g. Gauss-Hermite rules).

3.2 Numerical Methods for High-Dimensional Integrals

There is a wide range of methods (see, e.g., [12]) available for numerical mul-
tivariate integration. Mostly, the integral (17) is approximated by a weighted
sum of n function evaluations∫

[0,1]d
f(x) dx ≈

n∑
i=1

wif(xi) (18)

with weights wi ∈ IR and nodes xi ∈ IRd. The number n of nodes corresponds
to the number of simulation runs. Depending on the choice of the weights
and nodes, different methods with varying properties are obtained. Here, the
dimension as well as the smoothness class of the function f should be taken
into account.

Monte Carlo

In practise, the model is usually simulated by the Monte Carlo (MC) method.
Here, all weights equal wi = 1/n and uniformly distributed sequences of
pseudo-random numbers xi ∈ (0, 1)2K are used as nodes. This method is in-
dependent of the dimension, robust and easy to implement but suffers from a
relative low probabilistic convergence rate of order O(n−1/2). This often leads
to very long simulation times in order to obtain approximations of satisfactory
accuracy. Extensive sensitivity investigations or the optimisation of product
or management parameters, which require a large number of simulation runs,
are therefore often not possible.

Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods are equal-weight rules like Monte Carlo.
Instead of pseudo-random numbers, however, deterministic low-discrepancy
sequences (see, e.g., [37, 22]) or lattices (see, e.g., [40]) are used as point
sets which are chosen to yield better uniformity than random samples. Some
popular choices are Halton, Faure, Sobol and Niederreiter-Xing sequences and
extensible shifted rank-1 lattice rules based on Korobov or fast component-by-
component constructions. From the Koksma-Hlawka inequality it follows that
convergence rate of QMC methods is of order O(n−1(log n)d) for integrands
of bounded variation which is asymptotically better than the O(n−1/2) rate of
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MC. For periodic integrands, lattice rules can achieve convergence of higher
order depending on the decay of the Fourier coefficients of f , see [40]. Using
novel digital net constructions (see [14]), QMC methods can also be obtained
for non-periodic integrands which exhibit convergence rates larger than one if
the integrands are sufficiently smooth.

Product methods

Product methods for the computation of (17) are easily obtained by using the
tensor products of the weights and nodes of one-dimensional quadrature rules,
like, e.g., Gauss rules (see, e.g., [12]). These methods can exploit the smooth-
ness of the function f and converge with order O(n−s/d) for f ∈ Cs([0, 1]d).
This shows, however, that product methods suffer from the curse of dimension,
meaning that the computing cost grows exponentially with the dimension d of
the problem, which prevents their efficient applications for high-dimensional
(d > 5) applications like ALM simulations.

Sparse grids

Sparse grid (SG) quadrature formulas are constructed using certain com-
binations of tensor products of one-dimensional quadrature rules, see, e.g.,
[9, 15, 23, 38, 42]. In this way, sparse grids can, like product methods, ex-
ploit the smoothness of f and also obtain convergence rates larger than one.
In contrast to product methods, they can, however, also overcome the curse
of dimension like QMC methods to a certain extent. They converge with or-
der O(n−s(log n)(d−1)(s−1)) if the integrand belongs to the space of functions
which have bounded mixed derivatives of order s. Sparse grid quadrature
formula come in various types depending on the one-dimensional basis in-
tegration routine, like the trapezoidal, the Clenshaw-Curtis, the Patterson,
the Gauss-Legendre or the Gauss-Hermite rule. In many cases, the perfor-
mance of sparse grids can be enhanced by local adaptivity, see [5, 8], or by a
dimension-adaptive grid refinement, see [16].

3.3 Impact of the Dimension

In this section, we discuss the dependence of MC, QMC and SG methods on
the nominal and the effective dimension of the integral (17).

Tractability

In contrast to MC, the convergence rate of QMC and SG methods still exhibit
a logarithmic dependence on the dimension. Furthermore, also the constants
in the O-notation depend on the dimension of the integral. In many cases
(particularly within the SG method) these constants increase exponentially
with the dimension. Therefore, for problems with high nominal dimension d,
such as the ALM of life insurance products, the classical error bounds of the
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previous section are no longer of any practical use to control the numerical
error of the approximation. For instance, even for a moderate dimension of
d = 20 and for a computationally unfeasibly high number n = 1090 of function
evaluations, n−1(log n)d > n−1/2 still holds in the QMC and the MC error
bounds. For classical Sobolov spaces with bounded derivatives up to a certain
order, it can even be proved (see [39, 41]) that integration is intractable,
meaning that for these function classes deterministic methods of the form
(18) can never completely avoid the curse of dimension. For weighted Sobolov
spaces, however, it is shown in [39, 41] that integration is tractable if the
weights decay sufficiently fast. In the next paragraph and in Section 4.3 we
will give some indications that ALM problems indeed belong to such weighted
function spaces.

ANOVA decomposition and effective dimension

Numerical experiments show that QMC and SG methods often produce much
more precise results than MC methods for certain integrands even in hundreds
of dimensions. One explanation of this success is that QMC and SG methods
can, in contrast to MC, take advantage of low effective dimensions. QMC
methods profit from low effective dimensions by the fact that their nodes
are usually more uniformly distributed in smaller dimensions than in higher
ones. SG methods can exploit different weightings of different dimensions by
a dimension-adaptive grid refinement, see [16]. The effective dimension of the
integral (17) is defined by the ANOVA decomposition, see, e.g., [10]. Here, a
function f : IRd → IR is decomposed by

f(x) =
∑

u⊆{1,...,d}

fu(xu) with fu(xu) =
∫

[0,1]d−|u|
f(x)dx{1,...,d}\u−

∑
v⊂u

fv(xv)

into 2d sub-terms fu with u ⊆ {1, . . . , d} which only depend on variables
xj with j ∈ u. Thereby, the sub-terms fu describe the dependence of the
function f on the dimensions j ∈ u. The effective dimension in the trunca-
tion sense of a function f : IRd → IR with variance σ2(f) is then defined
as the smallest integer dt, such that

∑
v⊆{1,...,dt} σ2

v(f) ≥ 0.99 σ2(f) where
σ2

u(f) denotes the variances of fu. The effective dimension dt roughly de-
scribes the number of important variables of the function f . The effective
dimension in the superposition sense is defined as the smallest integer ds,
such that

∑
|v|≤ds

σ2
v(f) ≥ 0.99 σ2(f) where |v| denotes the cardinality of

the index set v. It roughly describes the highest order of important interac-
tions between variables in the ANOVA decomposition. For the simple function
f(x1, x2, x3) = x1e

x2+x2 with d = 3, we obtain dt = 2 and ds = 2 for instance.
For large d, it is no longer possible to compute all 2d ANOVA sub-terms. The
effective dimensions can still be computed in many cases, though. For details
and an efficient algorithm for the computation of the effective dimension in
the truncation sense we refer to [44]. For the more difficult problem to com-
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pute the effective dimension in the superposition sense, we use the recursive
method described in [45].

Dimension reduction

Typically, the underlying multivariate Gaussian process is approximated by
a random walk discretization. In many cases, a substantial reduction of the
effective dimension in the truncation sense and an improved performance of
the deterministic integration schemes can be achieved if the Brownian bridge
or the principal component (PCA) decompositions of the covariance matrix of
the underlying Brownian motion is used instead as it was proposed in [1, 36]
for option pricing problems. The Brownian bridge construction differs from
the standard random walk construction in that rather than constructing the
increments sequentially, the path of the Gaussian process is constructed in
a hierarchical way which has the effect that more importance is placed on
the earlier variables than on the later ones. The PCA decomposition, which is
based on the eigenvalues and -vectors of the covariance matrix of the Brownian
motion, maximises the concentration of the total variance of the Brownian
motion in the first few dimensions.6 Its construction requires, however, O(d2)
operations instead of O(d) operations which are needed for the random walk or
for the Brownian bridge discretization. For large d, this often increases the run
times of the simulation and limits the practical use of the PCA construction.

4 Numerical Results

We now describe the basic setting for our numerical experiments and investi-
gate the sensitivities of the performance figures from Section 2.5 to the input
parameters of the model. Then, the risks and returns of two different asset al-
location strategies are compared. Finally, we compute the effective dimensions
of the integral (17) in the truncation and superposition sense and compare
the efficiency of different numerical approaches for its computation.

4.1 Setting

We consider a representative model portfolio with 50, 000 contracts which have
been condensed into 500 equal-sized model points. The data of each model
point i is generated according to the following distribution assumptions: en-
try age xi ∼ N(36, 10), exit age xi ∼ N(62, 4), current age xi

0 ∼ U(xi, xi)
and monthly premium P i ∼ U(50, 500) where N(µ, σ) denotes the normal
6 Note that without further assumptions on f it is not clear which construction

leads to the minimal effective dimension due to possibly non-linear dependencies
of f on the underlying Brownian motion. As a remedy, also more complicated
covariance matrix decompositions can be employed which take into account the
function f as explained in [26].
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stock price model interest rate model correlation

µ = 8% σs = 20% κ = 0.1 θ = 4% σr = 5% r0 = 3%λ0 = −5% ρ = −0.1

E[QK ] 0.028 0.035 0.007 0.085 -0.001 0.156 -0.001 -0.0008

E[FK ] 0.039 -0.008 0.009 0.136 -0.0014 0.212 -0.0014 -0.0002

PDK -0.431 0.219 -0.172 -0.884 0.729 -2.122 0.005 0.04

Table 2. Capital market parameters p used in the simulation and their partial
derivatives f ′(p)/f(p) for f ∈ {PDK , E[QK ], E[FK ]}.

asset allocation bonus declaration shareholder product parameters solv. rate

β = 10% τ = 3 ω = 25% γ = 15% α = 90% ϑ = 90% z = 3% γ0 = 10%

E[QK ] 0.083 0.004 -0.002 0.009 -0.101 -0.006 -0.086 0.011

E[FK ] 0.002 0.002 -0.009 0.03 0.013 -0.01 -0.22 0.034

PDK 0.265 -0.054 0 -0.002 0.001 0.08 2.706 -0.504

Table 3. Solvency rate, management and product parameters p used in the simu-
lation and their partial derivatives f ′(p)/f(p) for f ∈ {PDK , E[QK ], E[FK ]}.

distribution with mean µ and variance σ, and U(a, b) denotes a uniform dis-
tribution in the interval [a, b]. In addition, the side conditions 15 ≤ xi ≤ 55
and 55 ≤ xi ≤ 70 are respected. The probability that the contracts of a
model point belong to female policyholders is assumed to be 55%. From the
difference of exit age and current age the maturity time di = xi − xi of the
contracts is computed. As sample insurance product, an endowment insur-
ance with death benefit, constant premium payments and surrender option is
considered as described in Example 1. For simplicity, we assume that the poli-
cies have not received any bonus payments before the start of the simulation,
i.e., Bi

0 = 0 for all i = 1, . . . ,m. We take the probabilities qi
k of death from

the DAV 2004R mortality table and choose exponential distributed surrender
probabilities ui

k = 1− e−0.03∆t. At time t0, we assume a uniform bond alloca-
tion, i.e., nj = (1− β)C0/

∑τ−1
i=0 b0(i) for j = 1− τ, . . . , 0. We assume Q0 = 0

which means that the shareholders will not make additional payments to the
company to avoid a ruin. This way, E[Qk] serves as a direct measure for the
investment returns of the shareholders in the time interval [0, tk]. The total ini-
tial reserves of the company are then given by F0 = γ0 D0. In the following, we
choose a simulation horizon of T = 10 years and a period length of ∆t = 1/12
years, i.e., K = 120. In our numerical tests we use the capital market, product
and management parameters as displayed in the second rows of Table 2 and 3
unless stated otherwise. In Table 2 and 3 also the sensitivities f ′(v)/f(v) (see
Section 2.5) are displayed for different functions f ∈ {PDK , E[QK ], E[FK ]}
and different model input parameter v, e.g., ∂PDK/(∂µ PDK) = −0.431.
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4.2 Capital Allocation

To illustrate possible applications of the ALM model, we compare the constant-
mix capital allocation strategy of Section 2.3 with an CPPI (constant propor-
tion portfolio insurance) capital allocation strategy (see, e.g., [34]) with re-
spect to the resulting default risk PDK and returns E[QK ]. Within the CPPI
strategy, the proportion of funds invested in (risky) stocks is linked to the cur-
rent amount of reserves. The strategy is realised in our model framework by
replacing β(Ck−1 +Pk) in equation (7) by β Fk−1 with β ∈ R+. The resulting
risk-return profiles of the constant-mix strategy and of the CPPI strategy are
displayed in Fig. 2 for different choices of β.

Fig. 2. Risk-return profiles of the different capital allocation strategies.

We see that the slightly negative correlation ρ = −0.1 results in a diver-
sification effect such that the lowest default risk is not attained at β = 0 but
at about β = 2.5% in the constant-mix case and at about β = 40% in the
CPPI case. Higher values of β lead to higher returns but also to higher risks.
As an interesting result we further see that the CPPI strategy almost always
leads to portfolios with much higher returns at the same risk and is therefore
clearly superior to the constant-mix strategy almost independently of the risk
aversion of the company. The only exception is a constant-mix portfolio with
a stock ratio β of 2.5 − 4%, which could be an interesting option for a very
risk averse company.

4.3 Effective Dimension

For the setting of Section 4.1, we determine in this section the effective di-
mensions dt and ds of the integral (17) in the truncation and superposition
sense, respectively, see Section 3.3. The effective dimensions depend on the
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nominal dimension d, on the discretization of the underlying Gaussian process
and on all other model parameters. In Table 4, the effective dimensions dt are
displayed which arise by the methods described in [44] for different nominal
dimensions d if the random walk, the Brownian bridge and the principal com-
ponent (PCA) path construction is employed, respectively. One can see that
the Brownian bridge and PCA path construction lead to a large reduction
of the effective dimension dt compared to the random walk discretization. In
the latter case, the effective dimension dt is almost as large as the nominal
dimension d while in the former cases the effective dimensions are almost in-
sensitive to the nominal dimensions and are bounded by only dt = 16 even
for very large dimensions as d = 512. In case of the PCA construction, dt

is even slightly decreasing for large d which is related to the so-called con-
centration of measure phenomenon, see [31]. Further numerical computations
using the method described in [45] show that the ALM problem is also of very
low effective dimension ds in the superposition sense. Here, we only consider
moderately high nominal dimensions due to the computational costs which
increase with d. For d ≤ 32, we obtain that the integral (17) is ’nearly’ addi-
tive, i.e. ds = 1, independent of d and independent of the covariance matrix
decomposition. Note that the effective dimensions are affected by several pa-
rameters of the ALM model. More results which illustrate how the effective
dimensions in the truncation sense vary in dependence of the capital market
model and of other parameters can be found in [18].

d Random walk Brownian bridge Principal comp.

32 32 7 12
64 64 7 14
128 124 13 12
256 248 15 8
512 496 16 8

Table 4. Truncation dimensions dt of the ALM integrand (17) for different nominal
dimensions d and different covariance matrix decompositions.

4.4 Convergence Rates

In this section, we compare the following methods for the computation of the
expected value (17) with the model parameters specified in Section 4.1:

• MC Simulation,
• QMC integration based on Sobol point sets (see [32, 43]),
• dimension-adaptive SG based on the Gauss-Hermite rule (see [16]).

In various numerical experiments, the Sobol QMC method and the dimension-
adaptive Gauss-Hermite SG method turned out to be the most efficient rep-
resentatives of several QMC variants (we compared Halton, Faure, Sobol low
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discrepancy point sets and three different lattice rules with and without ran-
domisation) and of several SG variants (we compared trapezoidal, Clenshaw-
Curtis, Patterson, Gauss-Legendre and Gauss-Hermite rule and different grid
refinement strategies), respectively. The results for d = 32 and d = 512 are
summarised in Fig. 3 where the number n of function evaluations is displayed
which is needed to obtain a given accuracy. In both cases we used the Brown-
ian bridge path construction for the stock prices and short interest rates. One

Fig. 3. Errors and required number of function evaluations of the different numerical
approaches to compute the expected value (17) with d = 32 (left) and with d = 512
(right) for the model parameters specified in Section 4.1.

can see that the QMC method clearly outperforms MC simulation in both
examples. The QMC convergence rate is close to one and nearly indepen-
dently of the dimension. Moderate accuracy requirements of about 10−3−10−4

are obtained by the QMC method about 100-times faster as by MC simula-
tion. For higher accuracy requirements, the advantage of the QMC method
is even more pronounced. Recall that these results can not be explained by
the Koksma-Hlawka inequality but by the very low effective dimension of the
ALM problem, see Section 4.3. The performance of the SG method deteri-
orates for very high dimensions. In the high dimensional case d = 512, the
SG method is not competitive to QMC. For the moderately high dimension
d = 32, sparse grids are the most efficient method with a very high conver-
gence rate of almost three. With 129 function evaluation already an accuracy
of 10−6 is achieved. Further numerical experiments indicate that the perfor-
mance of the SG method is more sensitive than (Q)MC to different choices
of model parameters which affect the smoothness of the integrand, like more
aggressive bonus declaration schemes and more volatile financial markets.
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5 Concluding remarks

In this article, we first described a discrete time model framework for the
asset-liability management of life insurance products. The model incorporates
fairly general product characteristics, a surrender option, a reserve-dependent
bonus declaration, a dynamic capital allocation and a two-factor stochastic
capital market model. The recursive formulation of the model allows for an
efficient computation of the model equations. Furthermore, the model struc-
ture is modular and allows to be extended easily. Numerical experiments il-
lustrate that the model captures the main behaviour patterns of the balance
sheet development of life insurance products. In the second part of this arti-
cle, we investigated the application of deterministic integration schemes, such
as quasi-Monte Carlo and sparse grid methods for the numerical simulation
of ALM models in life insurance. Numerical results demonstrate that quasi-
Monte Carlo and sparse grid methods can often outperform Monte Carlo
simulation for the ALM of participating life insurance products. Furthermore,
quasi-Monte Carlo methods converge nearly independently of the dimension
and produce even for high dimensions d = 512 more precise results than MC.
Sparse grids are the most efficient method for moderately high dimensions, but
their performance is more sensitive to different choices of model parameters
which affect the smoothness of the integrand and deteriorates for very high
dimensions. In these cases additional transformations are required to improve
the smoothness of the integrand. To explain the efficiency of the determinis-
tic methods we computed the effective dimension of the ALM problem with
and without dimension reduction techniques and showed that ALM problem
are often of very low effective dimension in the truncation and also in the
superposition sense.
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