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Abstract We present a theoretical framework for reproducing kernel based reconstruction methods
in certain generalized Besov spaces based on positive, essentially self-adjoint operators. An explicit
representation of the reproducing kernel is given in terms of an infinite series. We provide stability
estimates for the kernel, including inverse Bernstein-type estimates for kernel-based trial spaces,
and we give condition estimates for the interpolation matrix. Then, a deterministic error analysis
for regularized reconstruction schemes is presented by means of sampling inequalities. In particular,
we provide error bounds for a regularized reconstruction scheme based on a numerically feasible
approximation of the kernel. This allows us to derive explicit coupling relations between the series
truncation, the regularization parameters and the data set.
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1 Introduction

In this article, we develop an analysis for numerically feasible reproducing kernel based reconstruc-
tion methods in the general setting of metric measure spaces with heat kernel induced geometries;
see [10,17]. Such spaces are of practical importance in various machine learning applications. There,
high dimensional reconstruction problems in the Euclidean setting su↵er from the so-called curse

of dimension; see [15,26]. One reason why reconstruction is, however, sometimes still feasible is
that the underlying metric structure of the data is highly non-Euclidean. Over the last years, there
has been large interest in exploiting this fact; see for instance [16,61]. Moreover, practical data
analysis and machine learning tasks are usually formulated in the setting of probability spaces, i.e.
measures spaces; see for instance [52]. A further analytical challenge for the numerical analysis of
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machine learning problems is the fact that the underlying domain, in which the data is contained,
might not be an easily recognizable (sub-)manifold of the ambient Euclidean space but might rather
have a discrete structure such as a graph or a tree; see [5,6], and see [14] for reproducing kernels
on Riemannian manifolds. The advantage of the general framework presented here, is that both,
continuous Riemannian manifolds and discrete structures can be treated simultaneously. One focus
of recent research in this direction has been on di↵usion polynomials, see for instance [30]. More-
over, approximation problems in such spaces have also gained attention. Here, to the best of our
knowledge, most works have been devoted to wavelet-type approximation schemes, see [33], and
also [38] for the sphere and [8] for the torus.

Furthermore, many successful algorithms in machine learning make use of a reproducing kernel
Hilbert space structure, see [50]. A practical benefit of those methods is that they have an energy
optimization principle in the background with a solution which, though nominally the solution of an
infinite dimensional optimization problem, can be expressed in terms of finite linear combinations
of the kernel. The weights can usually be obtained by solving a finite dimensional optimization
problem whose dimension is linear in the number of data points. Therefore, it is desirable to have
reproducing kernels in this general framework available, see also [52].

To this end, generalized Besov spaces B�
p,q(M ;D) were introduced in [10], which are based on

an essentially self-adjoint operator D and its associated heat kernel defined on a rather general
metric measure space (M, ⇢, µ). This setting covers in particular uniformly elliptic operators in
divergence form, Laplace-Beltrami operators on Riemannian manifolds with non-negative Ricci
curvatures, heat kernels generated by Jacobi operators, but also Schrödinger-type operators, see
[19], and graph Laplacians if the graph satisfies a relative Faber-Krahn inequality, see [9] and also
[24]. The embedding properties derived in [10] show that the generalized Besov spaces B�

p,q(M ;D)
are indeed reproducing kernel Hilbert spaces for p = q = 2 and � > 0 large enough. For those
spaces, we derive an explicit multi-scale representation of the associated reproducing kernel, see
Theorem 2, i.e.,

K

(�) (x, y) :=
1
X

`=0

b

�2�`S(`;�)(x, y), (1)

where b > 1 is a fixed parameter, � > 0 determines the smoothness, and S(`;�) are integral kernels to
an operator defined via smooth functional calculus in terms of the operator D, see Sections 2 and 3
for the precise definitions. We show how the analysis from [18,41,42] for kernel-based approximation
with kernels given in series form can be extended to this setting, and we show improved results
using properties of kernels of the specific multiscale form (1).

Then, our main focus lies on the error analysis of reconstruction processes of the following
form. Given data yn = f(xn), xn 2 XN ⇢ M , generated by an unknown function f 2 B�

2,2(M ;D)
we consider minimizers of the regression functional

Jy;↵;XN
(g) =

N
X

n=1

(g(xn)� yn)
2 + ↵kgk2B�

2,2(M ;D)

(2)

with a regularization parameter ↵ > 0. It is well known that the minimizer lies in

LXN
:= span{K(�)(x

1

, ·), . . . , K(�)(xN , ·)}. (3)

The main technical di�culty here is that the kernel K(�) of (3) is usually not available in closed
form, and hence, further numerical approximations have to be incorporated to obtain a numerically
feasible approximation. In particular, we make use of the multi-scale representation (1) and address
both, a careful truncation of the infinite series and the numerical errors in the approximative
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computation of the spectral projections. Thus, we first consider in the spirit of [18] the error made
when, instead of LXN

from (3), one uses

LL
XN

:= span{K(�,L)(x
1

, ·), . . . , K(�,L)(xN , ·)} with K

(�,L) (x, y) :=
L
X

`=0

b

�2�`S(`;�)(x, y). (4)

In view of the Mairhuber-Curtis theorem [12,31], the truncation parameter L has to be coupled
to the point set XN in order to maintain unisolvency. To this end, we derive an explicit lower
bound on L depending on XN , which guarantees the existence of a quasi-optimal interplant from
LL
XN

at XN for arbitrary data. The lower bound takes the form L � ln(cq�1

XN
) with the separation

distance qXN
:= infxn 6=xm2XN

⇢(xn, xm) and a generic constant c > 0. Furthermore, in practical
applications the mere truncation (4) of the kernel is not yet su�cient since, in general, the eigen-
functions and eigenvectors of D which enter the definition of S(`;�) are not analytically available
and must be approximated properly. Therefore, we take into account also the numerical error made
by approximating these eigenfunctions with prescribed accuracy.

Subsequently, the discretization error is addressed by means of sampling inequalities for func-
tions from generalized Besov spaces B�

p,q(M ;D). Such inequalities have been studied over the last
years for classical Sobolev spaces, see e.g. [2–4,18,29,40,45,47,55,59] and have proven to be useful
for the error analysis of stable and consistent approximation schemes, including spline smoothing
and support vector regression algorithms, see [45,46,59]. A typical example takes the form

kfkL1
(M ;dµ)  C

⇣

h

��d/p
XN ,MkfkB�

p,q(M ;D)

+ kf |XN
k`1(XN )

⌘

, (5)

where � > d/p, and XN = {x
1

, . . . , xN} ⇢ M is a discrete point set with su�ciently small fill
distance hXN ,M := supz2M infxn2XN

⇢(z, xn)  h

0

, compare also Theorem 6. Here, d stands for a
parameter of the metric measure space M which generalizes the notion of dimension, see Section
2. Such inequalities can be used to obtain approximation error bounds for a large class of recon-
struction methods in the following way, see [45] and the references given there: Suppose that a
reconstruction process assigns to any function f sampled at the discrete points XN an approxi-
mation Rf for which a stability property kf � RfkB�

p,q(M ;D)

 CkfkB�
p,q,(M ;D)

and a consistency

property maxxn2XN
|f(xn) � Rf(xn)|  G(f) holds. Then, by (5) applied to the residual f � Rf

we obtain the error estimate

kf �RfkL1
(M ;dµ)  C

⇣

h

��d/p
XN ,MkfkB�

p,q(M ;D)

+G(f)
⌘

.

Thus applied to a numerically feasible approximation of Jy;↵;XN
, we obtain an upper bound on

the approximation error which is explicit in the problem parameters and hence suggests coupling
conditions of the parameters to ensure asymptotic convergence.

As a side product of our analysis, we derive two important stability properties, namely inverse
Bernstein-type inequalities for LXN

, and lower bounds on the smallest eigenvalues �

min

of interpo-
lation matrices based on K

(�). Precisely, we show (see Proposition 7), that for all point sets XN

with su�ciently small separation distance qXN
, it holds

kfkB�
2,2(M ;D)

 Cq

��
XN

kfkL2
(M ;dµ) for all f 2 LXN

, (6)

and (see Proposition 8)

�

min

⇣

K

(�)
XN ,XN

⌘

� Cq

2�+d
XN

, (7)

where K

(�)
XN ,XN

:=
⇣

K

(�)(xn, xm)
⌘

xn,xm2XN

denotes the Gramian matrix. Proving Bernstein esti-

mates of the form (6) for kernel-based trial spaces has been an active area of research during the
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last years (see, e.g., [21,32,34,36,37,44,48,56]). If combined with sampling inequalities of the form
(5), such inverse estimates can be used to prove stability of reconstruction schemes (see [45]). We
point out that we obtain inverse estimates for a variety of domains, including such with boundaries.
In our case, the kernel depends explicitly on the domain, while often the kernel is defined on the
whole space, and inverse estimates are proven for subdomains.
On the other hand, eigenvalue estimates of the form (7) can be used to get upper and lower bounds
on the covering numbers which are frequently used in learning theory [11,62].

The remainder of this paper is organized as follows: In Section 2, we introduce the necessary
technical framework of metric measure spaces and heat kernels. In Section 3, we show how certain
generalized Besov spaces carry the additional structure of a reproducing kernel Hilbert space and
we characterize their kernels as infinite series (see Theorem 2). In Section 4, we present sampling
inequalities for Besov spaces. Here we discuss two approaches. First, to derive bounds on arbitrary
L

p(M ; dµ)-norms of Besov functions also on measure spaces with infinite mass, we consider maximal
�-nets as sampling points (see Theorem 3). Second, for the special case of finite volume measure
spaces, we derive bounds on the strongest L1(M ; dµ)-norm for more general data sets, see Theorem
6. In Section 5, the truncation of the kernel series expansion (1) is discussed. We derive an explicit
lower bound for the truncation parameter L depending on the point set XN which guarantees the
existence of a quasi-optimal interpolant to arbitrary given data at XN , see Theorem 7. The essential
step in the proof is the derivation of a Riesz basis involving the integral kernels S(`;�), see Lemma
7. Subsection 5.2 is devoted to the proof of two stability properties of kernel-based approximation.
Here we show inverse Bernstein-type estimates for LXN

as defined in (3), see Proposition 7, and
derive bounds on the condition of the interpolation matrix based on the kernel K(�), see Proposition
8. Finally, in section 6, we analyze a regularized reconstruction method using a numerically feasible
approximation of the kernel function. Here, besides the discretization error, we take into account the
series truncation error and the error that stems from the numerical approximation of the spectrum
of D, see Theorem 9.

2 Notation and auxiliary results

In the sequel we denote by C and c generic positive constants that may change from line to line and
from expression to expression. We denote by C

1([0,1)) the space of smooth functions [0,1) ! R,
and for R > 0 we denote by C

1
c ([0, R]) the subspace of C

1([0,1)) of functions with compact
support in [0, R].

2.1 Measurable metric spaces

Let us use the framework of [10], and briefly recall basic definitions and assumptions. Suppose
(M, ⇢, µ) is a metric measure space with the following properties:

(i) (M, ⇢) is a locally compact separable metric space with distance ⇢ : M ⇥M ! [0,1). Further-
more, µ is a positive Radon measure with the volume doubling property, i.e., there is a constant
d > 0 such that

0 < µ (B (x, 2r))  2dµ (B (x, r)) < 1 for all x 2 M and r > 0. (8)

Here B (x, r) := {y 2 M : ⇢ (x, y) < r} denotes the open ball with radius r around x, and the
constant d is a parameter of the space (M, ⇢), which generalizes the notion of dimension.

(ii) The reverse doubling condition holds, i.e., there is a constant � > 0 such that

µ (B (x, 2r)) � 2�µ (B (x, r)) for all x 2 M and all 0 < r < diamM/3. (9)
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Note that in general � can be di↵erent from d. The reverse doubling condition follows from
(8) if M is connected (see [10, Proposition 2.2]).

(iii) The non-collapsing condition holds, i.e., there is a constant c > 0 such that

inf
x2M

µ (B (x, 1)) � c > 0 for all x 2 M. (10)

It follows from (8) that for x, y 2 M and r > 0 (see [10, (2.2)])

µ (B (y, r))  2d
✓

1 +
⇢ (x, y)

r

◆d

µ (B (x, r)) . (11)

If M is connected and µ(M) < 1, then (8) implies (9) and (10), see [10]. We refer to [25] for a
discussion of the parameters and their connection to the Assoud dimension.

2.2 Heat kernels on metric measure spaces

We recall that a family (pt)t>0

of kernel functions pt : M ⇥M ! R is called heat kernel if for almost
all x, y 2 M , all s, t > 0 and all f 2 L

2 (M ; dµ)

pt(x, y) � 0, pt(x, y) = pt(y, x),

Z

M

pt(x, y)dµ(y)  1,

pt+s(x, y) =

Z

M

pt(x, z)ps(y, z)dµ(z), L

2� lim
t!0

+

Z

M

pt(x, z)f(z)dµ(z) = f(x), (12)

where we use the notation L

2�limt!0

at = b if limt!0

kat � bkL2
(M ;dµ) = 0. As in [10], we impose

the following additional conditions on the heat kernel:

(i) Small time Gaussian upper bound: For all 0 < t  1 and x, y 2 M

|pt (x, y) |  C

exp
⇣

�c

⇢2
(x,y)
t

⌘

q

µ

�

B

�

x,

p
t

��

µ

�

B

�

y,

p
t

��

. (13)

(ii) Hölder continuity with exponent ↵H > 0: For all 0 < t  1 and x, y, ỹ 2 M with ⇢ (y, ỹ)  p
t,

|pt (x, y)� pt (x, ỹ)|  C

1

✓

⇢ (y, ỹ)p
t

◆↵H exp
⇣

�c

⇢2
(x,y)
t

⌘

q

µ

�

B

�

x,

p
t

��

µ

�

B

�

y,

p
t

��

. (14)

(iii) Markov property: For all t > 0
Z

M

pt (x, y) dµ (y) ⌘ 1. (15)

A heat kernel gives rise to a family of operators

Pt : L
2 (M ; dµ) ! L

2 (M ; dµ) , (Ptf) (x) :=

(

f(x) if t = 0,
R

M
pt (x, y) f (y) dµ(y) if t > 0.

As worked out in [20], the conditions on the heat kernel ensure that the family of operators {Pt}t>0

is
a strongly continuous, symmetric Markovian semigroup in L

2 (M ; dµ). The associated infinitesimal
generator D is defined by

Df := L

2�lim
t!0

f � Ptf

t

.
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Moreover, the domain DomD of D, i.e., the subspace of L

2 (M ; dµ) for which the limit exists,
is a dense subspace of L

2 (M ; dµ). By construction, D is a self-adjoint and positive definite op-
erator. Furthermore, there is a unique associated spectral resolution of the identity, denoted by
{E�}�2[0,1)

, such that E� is a bounded linear operator L

2 (M ; dµ) ! L

2 (M ; dµ) for every � > 0,
and

Df =

Z 1

0

� dE�f for all f 2 DomD =

⇢

f 2 L

2(M ; dµ) :

Z 1

0

�

2

d (E�f, f)L2
(M ;dµ) < 1

�

.

The spectral resolution can be used to define for continuous t : R ! [0,1) the operator

t (D) f :=

Z 1

0

t(�)dE�f for all f 2 L

2(M ; dµ) with

Z 1

0

t(�)2d (E�f, f)L2
(M ;dµ) < 1.

(16)

Such operators are often integral operators. In [13, Theorem 6], it is shown that an operator
g : L1 (M ; dµ) ! L

1(M ; dµ) is bounded if and only if there is an integral kernel G : M ⇥ M ! R
satisfying G 2 L

1 (M ⇥M) and

(gf)(x) =

Z

M

G(x, y)f(y) dµ(y) for almost every x 2 M.

From now on, we always consider a metric measure space (M, ⇢, µ) with the above outlined proper-
ties, in particular (8), (9) and (10), and an essentially self-adjoint positive operator D on L

2(M ; dµ)
with corresponding heat kernel satisfying (13), (14) and (15). Throughout the remainder of this
paper, we employ the following notation.

Notation 1 We denote smooth functions [0,1) ! [0,1) that are used to define operators via spectral

calculus by bold lowercase letters, and the corresponding (integral) kernels by the corresponding bold

uppercase letters. Thus, for t : R ! R and � > 0 such that t(�
pD) given by (16) is bounded as operator

L

1 (M ; dµ) ! L

1(M ; dµ), we denote the associated integral kernel by T �. Precisely, for 0 < �  1 and

a smooth function t : [0,1) ! [0,1), we set

t(�
p
D)u(x) =:

Z

M

T �(x, y)u(y)dµ(y) for almost every x 2 M. (17)

Moreover we set T := T
1

.

We note that under the above assumptions the kernel T �(x, y) is real-valued, see [27, Sec. 2.5].

2.3 Smooth cut-o↵ functions

Next, we will need several smooth cut-o↵ functions with various properties that we collect in this
subsection. Our computations follow the lines of [10].

Definition 1 Let b > 1, ⇣ � 1, 1 > c

2

� c

1

> 0 and c > 0.

(a) We set

G (b, ⇣) :=

⇢

t 2 C

1([0,1); [0,1)) :
d

`

du

`
t(u)

�

�

�

�

u=0

= 0 for all 1  `  ⇣, and supp t ⇢ [0, b]

�

. (18)

Elements of G(b, ⇣) are called smooth cut-o↵ functions of order ⇣ with support b.
We set

G(b) :=
\

⇣�1

G(b, ⇣). (19)

A function t 2 G(b, ⇣) is called normalized if 0  t  1.
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(b) We define A(b, c
1

, c

2

) to consist of those normalized t 2 G(b) for which
(i) supp t ⇢ [0, b],
(ii) t ⌘ 1 on [0, 1],
(iii) t � c

1

> 0 on [0, b3/4], and
(iv) t  c

2

on [b1/4, b].
(c) We define E(b, c) to consist of those normalized t 2 G(b) for which

(v) supp t ⇢ [b�1

, b],
(vi) t � c > 0 on [b�3/4

, b

3/4].
(d) A pair (t,p) 2 G(b)⇥ G(b) is called a partition of unity if

t(u) +
1
X

`=1

p(b�`
u) = 1 for all u 2 [0,1). (20)

Remark 1 Let b > 1 and c > 0. If (t,p) 2 G(b) ⇥ G(b) is a partition of unity, then t(0) = 1 and
p(0) = 0.

We introduce some abbreviations that will be used for the rest of this paper. From now on, we
assume that b > 1 is fixed, and the generic constants c and C may depend on b without further
mentioning.

Notation 2 For b > 1 and t 2 C

1([0,1)), we set

�t(·) := t(·)� t(b·), (21)

and, for ` 2 N

�`t (u) :=

(

t (u) if ` = 0,

�t
⇣

b

�`
u

⌘

if ` � 1.
(22)

Lemma 1 Let t 2 C

1([0,1)) with t(0) = 1. Then

L
X

`=0

�`t (u) = t
⇣

b

�L
u

⌘

for all u 2 [0,1) (23)

and (t,�t) form a partition of unity.

Proof We compute the partial sums for L 2 N. By a telescopic sum argument, we have for every
u 2 [0,1),

t(u) +
L
X

`=1

�t(b�`
u) = t(b�L

u) ! t(0) = 1 as L ! 1.

ut

We collect some more properties of the cut-o↵ functions that will be used later on.

Remark 2 Let b > 1.

(i) Suppose that ⌧ > 2d+ 4 and t 2 G(b). By [10, Theorem 3.4 and (2.7)], t(�
pD) for 0 < �  1

is an integral operator and there exist c⌧ > 0 and c

0
⌧ > 0 such that, for every 0 < �  1, the

associated integral kernel (compare (17)) satisfies

�

�T � (x, y)
�

�  c⌧µ (B (x, �))�1

⇣

1 +
⇢ (x, y)

�

⌘d/2�⌧
; (24)
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and, if ⇢(x, x0)  �, then with ↵H from (14) it holds

�

�T � (x, y)� T �(x
0
, y)

�

�  c

0
⌧

⇣

⇢(x, x0)
�

⌘↵H

µ (B (x, �))�1

⇣

1 +
⇢ (x, y)

�

⌘d/2�⌧
. (25)

Let 1  p  1. Then, by [10, Corollary 3.6], there is C > 0 such that for all 0 < �  1 and all
f 2 L

p(M ; dµ)

kt(�
p
D)fkLp

(M ;dµ)  CkfkLp
(M ;dµ). (26)

(ii) Littlewood-Paley-type decomposition: Suppose further that (t,p) 2 G (b)⇥ G(b) is a partition
of unity. Then, by [10, Corollary 3.9] it holds for all f 2 L

p (M ; dµ) with 1  p < 1

f = t(
p
D)f +

1
X

`=1

p(b�`
p
D)f. (27)

(iii) Suppose that f , g 2 C

1
c ([0, R]) for some R > 0 and 0  f  g. Then, by [10, (3.43)], it holds

for the associated integral kernels with � = 1 that

0  F (x, x)  G(x, x) for every x 2 M.

(iv) By [10, Lemma 3.19 (b)], there exists b̃ > 1 such that for all r � max{1, 3/diamM} and all
x 2 M

C

1

µ

⇣

B(x, r�1)
⌘�1

 1
[r,˜br](x, x)  C

2

µ

⇣

B(x, r�1)
⌘�1

, (28)

where 1
[r,˜br] denotes the integral kernel associated to the operator 1

[r,˜br](
pD) with the cha-

racteristic function 1. The constants C

1

and C

2

depend only on the parameters of the space.

The parameter b̃ from Remark 2 (iv) will play a crucial role in our analysis, see also [27]. Therefore,
we present a lower bound on b̃ in the Euclidean case M = Rd in the appendix. In particular, it
turns out that b̃ depends on the space dimension d and b̃(d) ! 1 as d ! 1.

2.4 Spectral spaces

Spectral spaces are usually defined as invariant sets under integral operators. Precisely, for 1  p 
1 and a compact set K ⇢ [0,1), we define the associated spectral space ⌃

p
K , see [10, Definition

3.10],

⌃

p
K :=

n

g 2 L

p (M ; dµ) : t(
p
D)g = g for all t 2 C

1 ([0,1)) , t ⌘ 1 on K

o

. (29)

We will need the following result proven in [10, Proposition 3.12].

Proposition 1 Let 1  p  q  1. If R � 1, then ⌃

p
[0,R]

⇢ ⌃

q
[0,R]

and there is a constant C > 0 such

that

kgkLq
(M ;dµ)  CR

d(1/p�1/q)kgkLp
(M ;dµ) for all g 2 ⌃

p
[0,R]

(30)

and

|g(x)� g(y)|  C(R⇢(x, y))↵HkgkL1
(M ;dµ) for all g 2 ⌃

1
[0,R]

and all x, y 2 M (31)

with ↵H from (14).

Remark 3 Note that Proposition 1 implies in particular that functions in ⌃

p
[0,R]

for R � 1 and

1  p  1 have continuous representatives.
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3 Generalized Besov spaces as reproducing kernel Hilbert spaces

In this section, we recall the notion of generalized Besov spaces. Our main result is Proposition
4, in which we explicitly identify the reproducing kernels for such spaces and derive a multiscale
decomposition of it. To introduce Besov-type reproducing kernel Hilbert spaces, we define cut-o↵
functions controlling the spectral decay in the kernel expansion. Here, we restrict ourselves to the
case �` := b

�` with a fixed b > 1. We essentially follow the notion of Besov spaces based on spectral
decompositions as introduced in [10, Section 6] and [27, Section 6], which in turn build on [43,53,
54].

Now, we briefly recall the setting (see [10, Definition 6.1]) in the case p, q � 1 and as in [27],
allow for di↵erent normalizations of the support (b = 2 in the notation of [10]):

Definition 2 Let � > 0, 1  p  1, and 1  q  1. Suppose that � 2 A(b, c
1

, c

2

), and  2 E(b, c
1

)
for some 0 < c

1

 c

2

< 1. The Besov space B�
p,q(M ;D) is defined as

B�
p,q (M ;D) :=

n

f 2 L

p (M ; dµ) : kfkB�
p,q(M ;D)

< 1
o

equipped with the norm

kfkB�
p,q(M ;D)

:=

 

�

�

�

�(
p
D)f

�

�

�

q

Lp
(M ;dµ)

+
1
X

`=1

⇣

b

�`k (b�`
p
D)fkLp

(M ;dµ)

⌘q
!

1/q

.

For B�
2,2(M ;D) we denote the associated inner product by

(f, g)B�
2,2(M ;D)

:=
⇣

�(
p
D)f,�(

p
D)g

⌘

L2
(M ;dµ)

+
1
X

`=1

b

2�`
⇣

 (b�`
p
D)f, (b�`

p
D)g

⌘

L2
(M ;dµ)

.

(32)

The space B�
2,2 (M ;D) and its topology do not depend on the specific choice of the functions  and

� (see [10, Section 6]). As in [27, Proof of Proposition 6.5] we will use such cut-o↵ functions � and
 for which additionally (�2

, 2) build a partition of unity and �(u) = 1 for u 2 [0, 1]. We now
build on [10] to show a relation between the Besov spaces and Bessel potential spaces (see Theorem
1).

Lemma 2 Let � > 0. Fix � and  that satisfy the assumptions of Definition 2, are such that (�2

, 2)
form a partition of unity, and satisfy �(u) = 1 for u 2 [0, 1]. We set

�̃ := b

��, and  ̃(u) := u

� (u). (33)

Then �̃ and  ̃ satisfy the conditions of Definition 2 and it holds

1
2
(u2� + 1)  �̃2

(u)+
1
X

`=1

b

2�` ̃
2

(b�`
u) = u

2� + (b2� � u

2�)�2(u)  b

2�(u2� + 1) (34)

for all u 2 [0,1).

Proof We check the conditions on �̃ first. We have supp �̃ = supp� ⇢ [0, b], and d⌫

du⌫ �̃(u)
�

�

�

u=0

=

b

� d⌫

du⌫ �(u)
�

�

�

u=0

= 0. Furthermore, if u 2 [0, b3/4], then
�

��̃(u)
�

� = b

��(u) � b

�
c > 0. Similarly for
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 ̃: We have supp  ̃ = supp ⇢ [b�1

, b]; and if u 2 [b�3/4
, b

3/4], then
�

� ̃(u)
�

� = u

� (u) � u

�
c �

b

�3�/4
c > 0. To show (34), note first that, since (�2

, 2) is a partition of unity, there holds

1
X

`=1

b

2�` ̃
2

(b�`
u) =

1
X

`=1

b

2�`
⇣

(b�`
u)� (b�`

u)
⌘

2

=
1
X

`=1

u

2� 2(b�`
u) = u

2�(1� �2(u)),

which implies

�̃2(u) +
1
X

`=1

b

2�` ̃
2

(b�`
u) = u

2� + (b2� � u

2�)�2(u). (35)

To prove the upper bound in (34), observe that, for u 2 [0,1), we have

u

2� + (b2� � u

2�)�2(u) = u

2� + b

2��2(u)� u

2��2(u)  u

2� + b

2�  b

2�(1 + u

2�).

To show the lower bound, note that, for u  1, we have

u

2� + (b2� � u

2�)�2(u) = b

2� � 1
2
(u2� + 1),

while, for 1  u, we have

u

2� + (b2� � u

2�)�2(u) � u

2� � 1
2
(u2� + 1).

This concludes the proof. ut

Lemma 2 immediately implies that the Besov spaces B�
2,2(M ;D) are (norm-)equivalent to Bessel

potential spaces based on D. Moreover, we have the following result for the Hilbert space case
p = q = 2.

Theorem 1 Let b > 1. Then there are constants c, C > 0 such that

ck(D� + Id)fkL2
(M ;dµ)  kfkB�

2,2(M ;D)

 Ck(D� + Id)fkL2
(M ;dµ) for all f 2 B�

2,2(M ;D).

Proof Consider more generally smooth cut-o↵ functions s, t 2 G(b), and suppose that s  t holds
pointwise. Then we have ks(pD)fkL2

(M ;dµ)  kt(pD)fkL2
(M ;dµ) for all f 2 L

2(M ; dµ) since

ks(
p
D)fk2L2

(M ;dµ) =

Z 1

0

|s(�)|2dhE�f, fi


Z 1

0

|t(�)|2dhE�f, fi = kt(
p
D)fk2L2

(M ;dµ).

Hence the assertion follows by (34). ut

3.1 The reproducing kernel and its multiscale decomposition

We fix some cut-o↵ functions that will be used throughout the remainder of this paper. First, we
keep � and  fixed that satisfy the assumptions of Lemma 2. (This corresponds to the choice of
the cut-o↵ functions used in the proof of [27, Prop. 6.5].)
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Notation 3 We set

k(�) : [0,1) ! [0,1), k(�)(u) := (u2� + (b2� � u

2�)�2(u))�1

. (36)

Furthermore, for ` � 1, we set

g(`;�) : [0,1) ! [0,1), g(`;�)(u) :=
�

u

2�(1� �2(b`u)) + b

2�(1�`)�2(b`u)
��1

;

and (recall Notation 2) we define

w(�)
` (u) :=

8

<

:

⇣

k(�) · �
⌘

(u) if ` = 0,
⇣

g(`;�) ·��
⌘

(u) if ` � 1,
(37)

and

s(`;�)(u) := w(�)
` (b�`

u). (38)

Lemma 3 We have w(�)
` ⌘ w(�)

2

for all ` � 2. Furthermore, there is a c > 0 such that for all ` � 1,
we have the lower bound

s(`;�)(u) � c for all u 2
h

b

`
, b

`+ 3
4

i

,

and in particular s(`;�) � c1
[b`,b`+

3
4
]

. Moreover,

1
X

`=0

b

�2�`s(`;�) = k(�)
. (39)

Proof We note that b

`
u 2 supp� ⇢ [0, b] implies that u 2 [0, b�`+1]. Recall also that for ` � 1,

suppw(`;�) ⇢ supp�� ⇢ [b�1

, b]. Therefore, if ` � 2 and u 2 suppw(`;�), then b

`
u � b

2

b

�1 = b, and
thus �(b`u) = 0. Hence, for all ` � 2,

w(�)
` (u) =

�

u

2�(1� �2(b`u)) + b

2�(1�`)�2(b`u)
��1

�� (u) = u

�2�
��(u).

This shows in particular that w(�)
` ⌘ w(�)

2

for all ` � 2.

It remains to consider s(`;�). We note that by definition there holds

b

�2�`s(`;�)(u) = b

�2�`w(�)
`

⇣

b

�`
u

⌘

= b

�2�`g(`;�)(b�`
u)�`�(u)

=
�

u

2�(1� �2(u)) + b

2��2(u)
��1

�`�(u)= �`�(u)k
(�)(u). (40)

Consider u 2 [b`, b`+
3
4 ]. First, we get with (34)

�

u

2�(1� �2(u)) + b

2��2(u)
��1 � �

b

2�(u2� + 1)
��1 � b

�2�(2u2�)�1 � 1
2
b

�2�
b

�(`+ 3
4 )2�

� 1
2
b

� 7
2�

b

�2�`
. (41)

Second, we have

�`�(u) = �(b�`
u)� �(b�`+1

u) � c if u 2 [b`, b`+
3
4 ]. (42)

Putting (40), (41) and (42) together, we obtain

s(`;�)(u) � c

2
b

� 7
2� for all u 2

h

b

`
, b

`+ 3
4

i

and all ` � 1.
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Furthermore, note that �(u) � �(bu) � 0 for all u 2 R+ since �(u) = 1 � �(bu) if u  1, and
�(bu) = 0 if u � 1, and thus, s(`;�) � c1

[b`,b`+
3
4
]

. Finally, to show (39), we observe that by Lemma

1 since �(0) = 1, we have

1
X

`=0

b

�2�`s(`;�)(u) = k(�)�(u) +
1
X

`=1

b

�2�`
⇣

(b�`
u)2�(1� �2(u)) + b

2�(1�`)�2(u)
⌘�1

�`�(u)

= k(�)(u)
1
X

`=0

�`�(u) = k(�)(u).

ut

Next, we aim to show that the Besov spaces B�
2,2(M ;D) are reproducing kernel Hilbert spaces if

the index � is su�ciently large. We recall that K

(�) : M ⇥M ! R is called reproducing kernel for

B�
2,2(M ;D) if K(�)(x, ·) 2 B�

2,2(M ;D) for all x 2 M and f(x) =
⇣

f,K

(�)(x, ·)
⌘

B�
2,2(M ;D)

for all x 2 M

and all f 2 B�
2,2(M ;D) holds. A necessary condition is that point evaluations are continuous linear

functionals on B�
2,2(M ;D). Recall that, for classical Sobolev spaces W

2,�(⌦) on Lipschitz domains

⌦ ⇢ Rd, the Sobolev embedding theorem guarantees continuous point evaluations if � >

d
2

, see
[1]. In our abstract setting, we do not have a natural meaning of dimensionality, but, as already
mentioned, the number d in (8) plays the role of space dimension. Moreover the parameter � > 0
resembles the smoothness parameter of classical Sobolev spaces. Roughly speaking, the larger �,
the smoother the respective kernel, and thus the smaller the reproducing kernel Hilbert space. Here
small is meant in terms of embeddings, see [10].
In the following proposition, we show that the reproducing kernel possesses a multilevel decompo-
sition which in the sequel will be used to approximate the kernel. This is in the spirit of [7,8,18,
35,41,42]. In the following, we shall use s(`;�) and k(�) introduced in Notation 3. Recall that we
denote the associated integral kernels by S(`;�) and K(�), respectively.

Proposition 2 Let � > d/2 and let b > 1. Then, the Besov space B�
2,2 (M ;D) with cut-o↵ functions �̃

and  ̃ from Lemma 2 is a reproducing kernel Hilbert space with kernel

K

(�) (x, y) :=
1
X

`=0

b

�2�`S(`;�)(x, y) = K(�) (x, y) . (43)

Proof By [10, Proposition 6.7], we have the same embedding properties as for usual Besov spaces,
namely B�

p,q(M ;D) ⇢ B�1
p1,q1(M ;D) if 1  p  p

1

 1, 0 < q  q

1

 1, 0 < �  �

1

< 1
and �

d � 1

p = �1
d � 1

p1
. In particular, for p = q = 2, p

1

= q

1

= 1 and �

1

= � � d
2

> 0, we obtain
B�
2,2(M ;D) ⇢ B�11,1(M ;D). Furthermore, by [10, Proposition 6.4(b)], we have B�11,1(M ;D) ⇢ Lip�

1

for 0 < �

1

< ↵H with ↵H from (14), where, for L > 0, LipL denotes the space of functions

f for which kfkL1
(M ;dµ) + supx 6=y

|f(x)�f(y)|
⇢L

(x,y)
is finite. Since we also have the trivial embedding

B�
p,q(M ;D) ⇢ B⌧

p,q(M ;D) if ⌧  �, we deduce that B�
2,2(M ;D) ⇢ Lip�

1

for some 0 < �

1

< ↵H .
Hence point evaluations are well-defined on B�

2,2(M ;D). We show the reproducing property

(K(�)(x, ·), f)B�
2,2(M ;D)

= f(x) for all x 2 M and all f 2 B�
2,2(M ;D). (44)
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For that, we compute for f 2 B�
2,2(M ;D) and x 2 M , using the notation introduced in (17)

(K(�)(x, ·), f)B�
2,2(M ;D)

=
⇣

�̃(
p
D)K(�)(x, ·), �̃(

p
D)f,

⌘

L2
(M ;dµ)

+
1
X

`=1

b

2�`
⇣

 ̃(b�`
p
D)K(�)(x, ·),  ̃(b�`

p
D)f,

⌘

L2
(M ;dµ)

=

✓

Z

M

�̃(y, ·)K(�)(x, y) dµ(y), �̃(
p
D)f

◆

L2
(M ;dµ)

+

+
1
X

`=1

b

2�`

✓

Z

M

 ̃ b�`(y, ·)K(�)(x, y) dµ(y),  ̃(b�`
p
D)f

◆

L2
(M ;dµ)

=

Z

M

K

(�)(x, y)

Z

M

�̃(
p
D)f(z)�̃(y, z) dµ(z) dµ(y)+

+
1
X

`=1

b

2�`
Z

M

K

(�)(x, y)

Z

M

 ̃(b�`
p
D)f(z) ̃ b�`(y, z) dµ(z) dµ(y)

=

✓

K

(�)(x, ·),
⇣

�̃(
p
D)
⌘

2

f

◆

L2
(M ;dµ)

+

 

K

(�)(x, ·),
1
X

`=1

b

2�`
⇣

 ̃(b�`
p
D)
⌘

2

f

!

L2
(M ;dµ)

. (45)

Next, recall at this point that S(`;�) is as usual the integral kernel associated to the operator
s(`;�)(

pD) = g(`;�)(b�`
pD)�`�(

pD). If we denote the integral kernels associated to g(`;�)(b�`
pD)

and �`�(
pD) by G(`;�)

b�` and �`�, respectively, we obtain
Z

M

S(`;�)(x, y)f(y) dµ(y) = s(`;�)(
p
D)f(x) = g(`;�)(b�`

p
D)�`�(

p
D)f(x)

= g(`;�)(b�`
p
D)

Z

M

�`�(x, y)f(y) dµ(y)

=

Z

M

G(`;�)
b�` (x, z)

Z

M

�`�(z, y)f(y) dµ(y) dµ(z),

that is,

S(`;�)(x, y) =

Z

M

G(`;�)
b�` (x, z)�`�(z, y) dµ(z). (46)

Inserting this representation into (45), we obtain using (35)

⇣

K

(�)(x, ·), f

⌘

B�
2,2(M ;D)

=

0

@

1
X

`=0

b

�2`�S(�)(x, y), (�̃(
p
D))2f+

1
X

j=1

b

2�j( ̃(b�j
p
D))2f

1

A

L2
(M ;dµ)

=

 1
X

`=0

b

�2�`
Z

M

G(`;�)
b�` (x, z)�`�(z, ·) dµ(z), (k(�)(

p
D))�1

f

!

L2
(M ;dµ)

=

 1
X

`=0

b

�2�`g(`;�)(b�`
p
D)�`�(x, ·), (k(�)(

p
D))�1

f

!

L2
(M ;dµ)

=

 1
X

`=0

b

�2�`(b�2�`D�(1� �2(
p
D)) + b

�2`�+2��2(
p
D))�1

�`�(x, ·), (k(�)(
p
D))�1

f

!

L2
(M ;dµ)

=

 

k(�)(
p
D)

1
X

`=0

�`�(x, ·), (k(�)(
p
D))�1

f

!

L2
(M ;dµ)

=

 1
X

`=0

�`�(x, ·), f

!

L2
(M ;dµ)

= f(x), (47)
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where the last step follows from Lemma 1 and Remark 2 (ii), see [10, Cor. 3.9]. The second equality
in (43) follows from (39). ut
So far, we have identified the reproducing kernel K(�)(x, y) for the Hilbert space B�

2,2(M ;D). In
the remaining sections, we shall focus on kernel-based approximation schemes based on these re-
producing kernels.

4 Sampling inequalities

In this section, we prove sampling inequalities. They provide a systemic tool for the deterministic
error analysis of stable and consistent processes for the reconstruction of functions f 2 B�

p,q(M ;D)
from given point values at discrete locations X ⇢ M , as outlined in the introduction. We will
present two approaches. First, we consider maximal �-nets as sampling points which allows in
special cases also for estimates if µ(M) = 1 (see Corollary 1). Then, we specialize to the case
of finite volume and derive estimates in the L

1(M ; dµ)-norm using a norming set approach. The
latter technique allows for more general scattered sampling points. Note that we derive sampling
inequalities for general spaces B�

p,q(M ;D) which can be continuously embedded into the space of
bounded continuous functions, while in the applications we focus on kernel-based methods, and
hence on Hilbert spaces B�

2,2(M ;D).

4.1 Sampling inequalities based on maximal �-nets

To describe appropriate sampling points, we use the notion of maximal nets (see [10, Definition
2.4]). Let � > 0. A discrete (possibly infinite) set X ⇢ M is called �-net on M if qX � �, where

qX := inf
xn 6=xm2X

⇢ (xn, xm) (48)

denotes the separation distance of X. A �-net X is called a maximal �-net on M if it cannot be
enlarged, i.e., if for every z 2 M \X there is an xn 2 X such that ⇢(xn, z)  �. Note, that in this
case

hX,M := sup
z2M

inf
xn2X

⇢(z, xn)  �, (49)

where hX,M denotes the fill distance of X in M . We use the following result from [10, Proposition
2.5]. Under the assumptions on (M,µ, ⇢) outlined in Section 2, for every � > 0, there exists a
maximal �-net X�, which consists of at most countably many points. Furthermore, there exists a
family of pairwise disjoint, measurable sets An, xn 2 X�, such that M =

S

xn2X�
An, and B(xn, �

2

) ⇢
An ⇢ B(xn, �).
It turns out that maximal nets are norming sets for the spectral spaces (29). Precisely, we have the
following result from [10, Theorem 4.2].

Theorem 2 Let 0 < � < 1 be such that, with the constants ↵ and C

1

from (14), there holds

C

1

(2d+ 1) 22d+1

�

↵ =
1
2
. (50)

For R � b set � := �
R and consider a maximal �-net X� ⇢ M with associated disjoint cover {An}xn2X�

.

Then, for every fR 2 ⌃

p
[0,R]

with 1  p < 1, we have

1
2
kfRkLp

(M ;dµ) 
0

@

X

xn2X�

µ(An) |fR(xn)|p
1

A

1/p

 2 kfRkLp
(M ;dµ) (51)



Approximation in Besov-type RKHS 15

and for p = 1, we get

1
2
kfRkL1

(M ;dµ)  sup
xn2X�

|fR(xn)|  2 kfRkL1
(M ;dµ) . (52)

Our main contribution in this section is the following sampling inequality.

Theorem 3 Let µ(M) < 1 and 0 < � < 1 be such that condition (50) holds. Let r, p 2 [1,1],
q 2 (0,1], and � > max

�

d (1/p� 1/r)
+

, d/r

 

, where (x)
+

:= max{x, 0} for x 2 R. Then there is a

constant c > 0 with the following property: For every � 2 (0, �/b] and for every maximal �-net X� with

associated disjoint partition An of M , xn 2 X�, we have for all f 2 B�
r,q(M ;D)

kfkLp
(M ;dµ)  c

⇣

�

��d(1/r�1/p)+ + �

��d/r
⌘

kfkB�
p̃,q(M ;D)

+ 2

0

@

X

xn2X�

µ(An) |f(xn)|p
1

A

1/p

, (53)

where we set
�

P

xn2X�
µ(An) |f(xn)|p

�

1/p
:= supxn2X�

|f(xn)| if p = 1.

Proof We note that, by [10, Proposition 6.7], B�
˜p,q(M ;D) ⇢ B⌧1,1(M ;D) with ⌧ = �� d/r > 0, and

thus, by [10, Proposition 6.4(b)], every element of B�
r,q(M ;D) has a continuous representative, cf.

also the proof of Theorem 2. Therefore, the last term in (53) is well-defined. We proceed similarly
to the proof of classical sampling inequalities (see, e.g., [18,40,59]). Set R := �/� � b. Let f 2
B�
r,q(M ;D) and fR 2 ⌃

p
[0,R]

be arbitrary. Then, for every maximal �-net X� with associated partition

An, xn 2 X�, we have for p < 1 by (51) and with
P

xn2X�
µ(An) = µ(M),

kfkLp
(M ;dµ)  kf � fRkLp

(M ;dµ) + kfRkLp
(M ;dµ)

 kf � fRkLp
(M ;dµ) + 2

0

@

X

xn2X�

µ(An) |fR(xn)|p
1

A

1/p

 kf � fRkLp
(M ;dµ) + 2

0

@

X

xn2X�

µ(An) |f(xn)� fR(xn)|p
1

A

1/p

+ 2

0

@

X

xn2X�

µ(An) |f(xn)|p
1

A

1/p

 kf � fRkLp
(M ;dµ) + 2µ(M)1/p kf � fRkL1

(M ;dµ) + 2

0

@

X

xn2X�

µ(An) |f(xn)|p
1

A

1/p

, (54)

and similarly, using (52),

kfkL1
(M ;dµ)  3kf � fRkL1

(M ;dµ) + 2 sup
xn2X�

|f(xn)|. (55)

We will show in Theorem 4 below that for every admissible p, r, q and �, there is C > 0 such that
for every f 2 B�

r,q(M ;D), we have

inf
fR2⌃p

[0,R]

kf � fRkLp
(M ;dµ)  CR

d(1/r�1/p)+��kfkB�
r,q(M ;D)

, (56)

which finishes the proof. ut

Remark 4 Note that for p = 1, we obtain in Theorem 4 the anticipated optimal rate1 �

d/r��.

1 For p 6= 1, the convergence rate is �

d/r�� instead of the anticipated rate �

d(1/r�1/p)+�� , where (x)
+

=
max{x, 0} (cf. [59] for the case of classical Sobolev spaces). This is most likely due to the fact that we work with
the global estimates (51) and (52) instead of local estimates on a cover (see also [40,59]).
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Corollary 1 In the case p = 1, we can skip the assumption µ(M) < 1 in Theorem 3 and we get that

there is a constant c > 0 with the following property: For every � 2 (0, �/b] and for every maximal �-net

X� with associated disjoint partition An of M , xn 2 X�, we have for all f 2 B�
r,q(M ;D)

kfkL1
(M ;dµ)  c�

�� d
r kfk�

Br,q
(M ;D)

+ 2 sup
xn2X�

|f(xn)|. (57)

It remains to prove the best approximation error estimate (56). The following theorem generalizes
results from [10, Theorem 3.15].

Theorem 4 Let R � b > 1. Suppose that 1  r, p  1, 0 < q  1 and � > d (1/p� 1/r)
+

, where

again (x)
+

= max{x, 0}. If r  p, then there is a constant c > 0 such that for every f 2 B�
r,q (M ;D)

inf
g2⌃p

[0,R]

kf � gkLp
(M ;dµ)  cR

d(1/r�1/p)�� kfkB�
r,q(M ;D)

. (58)

If µ(M) < 1, then for all 1  p, r  1 (not necessarily r  p), there is a constant such that for every

f 2 B�
r,q (M ;D)

inf
g2⌃p

[0,R]

kf � gkLp
(M ;dµ)  cR

d(1/r�1/p)+�� kfkB�
r,q(M ;D)

. (59)

Proof We follow the lines of the proof of [10, Theorem 3.15]. Here we employ di↵erent truncation
functions � and  , which yield an equivalent norm to the Besov norm corresponding to the re-
producing kernel K(�). Precisely, let � 2 A(b, c

1

, c

2

), and set  := ��. Then � and  satisfy the
assumptions of Definition 2, and (�, ) form a partition of unity. Now choose LR 2 N, such that
b

LR+1  R  b

LR+2. Note that this is possible since R � b. Then by Lemma 1, we have for all
f 2 L

p(M ; dµ)

�(
p
D)f+

LR
X

`=1

 (b�`
p
D)f = �(b�LR

p
D)f 2 ⌃

p

[0,b(LR+1)
]

⇢ ⌃

p
[0,R]

.

Since  (b�`
pD)f 2 ⌃

p
[0,b`+1

]

, we have by (27) and (30)

inf
g2⌃p

[0,R]

kf � gkLp
(M ;dµ) 

�

�

�

�

�

f �
 

�(
p
D)f +

LR
X

`=1

 (b�`
p
D)f

!

�

�

�

�

�

Lp
(M ;dµ)


1
X

`=LR+1

�

�

�

 (b�`
p
D)f

�

�

�

Lp
(M ;dµ)


1
X

`=LR+1

C(b`)d(1/r�1/p)k (b�`
p
D)fkLr

(M ;dµ)

= Cb

(LR+1)d(1/r�1/p)
1
X

`=0

b

`d(1/r�1/p)
�

�

�

 (b�(`+LR+1)

p
D)f

�

�

�

Lr
(M ;dµ)

.

Note that, since � � 0,

kfkqB�
r,q(M ;D)

� c

1
X

`=1

b

q�`
�

�

�

 (b�`
p
D)f

�

�

�

q

Lr
(M ;dµ)

� b

�mq
�

�

�

 (b�m
p
D)f

�

�

�

q

Lr
(M ;dµ)

for every m 2 N. Thus, we can further estimate (recall that b

LR+1  R)

inf
g2⌃p

[0,R]

kf � gkLp
(M ;dµ)  Cb

(LR+1)d(1/r�1/p)
1
X

`=0

b

`d(1/r�1/p)
b

��(`+LR+1)kfkB�
r,q(M ;D)

 b

(LR+1)(d(1/r�1/p)��) kfkB�
r,q(M ;D)

1
X

`=0

b

`(d(1/r�1/p)��)  CR

d(1/r�1/p)�� kfkB�
r,q(M ;D)

, (60)
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where the geometric series converges because of the condition � > d (1/r � 1/p). This concludes the
proof of (58).
If µ(M) < 1 and r � p, we proceed similarly to the proof of [10, Proposition 3.20]. We use Hölder’s
inequality (1/p = 1/r + (r � p)/(pr)) to obtain for every ` 2 N

�

�

�

 (b�`
p
D)f

�

�

�

Lp
(M ;dµ)


�

�

�

 (b�`
p
D)f

�

�

�

Lr
(M ;dµ)

µ(M)(r�p)/(pr)

= Cb

�`� kfkB�
r,q(M ;D)

,

and similarly for �. This estimate replaces the Nikloskii-type inequality (30) in (60), and the rest
of the proof follows as above. ut

4.2 L

1(M ; dµ)-estimates for the case µ(M) < 1

We now follow the lines of [59,18] and derive a generalized polynomial reproduction, where the
spectral spaces ⌃

1
[0,R]

play the role of the classical polynomial spaces. To prove reproduction for-
mulas, we use norming sets (see [23,57]), and proceed along the lines of [57] (see also [58]). In the
case µ(M) < 1, we will always work with finite discrete point sets XN ⇢ M . To stress this fact,
we will indicate the number of points with a subscript N 2 N.
Proposition 3 There is a constant C̃ > 0 such that for all finite sets XN = {x

1

, . . . , xN} ⇢ M with

hXN ,M  C̃ and all R  C̃/hXN ,M , the sampling operator T : ⌃1
[0,R]

! RN , f 7! (f(XN )) is injective,

and kT�1k  2, where ⌃

1
[0,R]

and RXN are equipped with the sup-norms.

Proof Let f 2 ⌃

1
[0,R]

with kfkL1
(M ;dµ) = 1. Then, there exists x

⇤ 2 M such that |f(x⇤)| � 3/4. We
need to show that there exists xn 2 XN with |f(xn)| � 1/2. By definition of the fill distance, there
exists xn 2 X such that ⇢(xn, x⇤)  hXN ,⌦ . We get from (31) that

|f(x⇤)� f(xn)|  C(RhXN ,M )↵H  CC̃

↵  1/4,

where ↵H is from (14) and the last inequality holds if C̃ > 0 is chosen small enough. Therefore,

|f(xn)| � |f(x⇤)|� |f(x⇤)� f(xn)| � 3/4� 1/4 = 1/2.

This concludes the argument. ut
Furthermore, we will use the following result, which is a special case of [58, Theorem 3.4].

Theorem 5 Suppose V is a finite dimensional normed linear space and let {x
1

, . . . , xN} be such that

T : V ! RN , v 7! (v(x
1

), . . . , v(xN ))T is injective. Then, for every ' 2 V

⇤ there exists a vector u 2 RN

such that ' (v) =
PN

n=1

unv(xn) for every v 2 V , and kukRN⇤  k'kV ⇤
�

�

T

�1

�

�

T (V )!V
.

Combining Theorem 5 and Proposition 3 gives the following result.

Proposition 4 There is a constant C̃ > 0 such that for all point sets XN = {x
1

, . . . , xN} ⇢ M with

hXN ,M  C̃, there exist an : M ! R, n = 1, . . . , N such that for R  C̃/hXN ,M

(i)
PN

n=1

an (x) fR (xn) = fR (x) for all x 2 M and all fR 2 ⌃

1
[0,R]

; and

(ii)
PN

n=1

|an (x)|  2 for all x 2 M .

With Proposition 4 at hand, we can proceed essentially verbatim along the lines of the proof of
Theorem 3 and obtain finally the following result.

Theorem 6 Let 1  p̃  1, 0 < q  1 and � > d/p̃. There are C, h
0

> 0 with the following property:

For every set XN = {x
1

, . . . , xN} ⇢ M with hXN ,M  h

0

, we have for all f 2 B�
˜p,q(M ;D)

kfkL1
(M ;dµ)  C

⇣

h

��d/˜p
XN ,MkfkB�

p̃,q(M ;D)

+ kf |XN
k`1(XN )

⌘

.
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5 Truncation of the kernel

In this section, we derive several technical estimates concerning the approximation of the kernel
K

(�). Here, we closely follow [8]. The estimates are practically relevant, since linear combinations
of truncated kernels lie in finite dimensional spectral spaces. Elements of spectral spaces will take
the role of polynomials in classical analysis for Sobolev spaces on Euclidean domains. Furthermore,
from now on we assume supx2M µ(B(x, r))  C(r) for all r > 0. Note that this is trivially true if
µ(M) < 1.

Lemma 4 There is C > 0 such that for all N , ` 2 N, all XN = {x
1

, . . . , xN} ⇢ M , and all a
1

, . . . , aN 2
R,

�

�

�

N
X

n=1

anb
�2�`S(`;�)(xn, ·)

�

�

�

Lp
(M ;dµ)

 C

�

�

�

N
X

n=1

anK
(�)(xn, ·)

�

�

�

Lp
(M ;dµ)

.

Proof Recall from (40) that b

�2�`s(`;�)(u) = �`�(u)k
(�)(u). Hence,

b

�2�`S(`;�) (·, z) = �`�(
p
D)K(�)(·, z) for all z 2 M.

Thus, by the triangle inequality and (26), we obtain

�

�

�

�

�

N
X

n=1

anb
�2�`S(`;�) (·, xn)

�

�

�

�

�

Lp
(M ;dµ)


�

�

�

�

�

�`�(
p
D)

N
X

n=1

anK
(�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 2 sup
0<�1

�

�

�

�

�

�(�
p
D)

N
X

n=1

anK
(�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 2C

�

�

�

�

�

N
X

n=1

anK
(�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

.

This concludes the argument. ut

Now, we use the following notation. For XN = {x
1

, . . . , xN} ⇢ M , x 2 M and k 2 N
0

, we set

Ak(x) := B (x, (k + 1) qXN
) \B (x, kqXN

) , (61)

where qXN
denotes the separation distance of XN as defined in (48). We need a combinatorial

estimate that we briefly discuss. Note that in the special case of quasi-uniform point sets in Rd,
there is a constant C > 0 such that for all XN ⇢ Rd, every k 2 N and every x 2 Rd, we have

#(XN \Ak(x))  Ck

d�1

.

In the general setting, we have by (8) and (11) for all XN ⇢ M , every k 2 N
0

, every x 2 M and
every xn 2 XN \Ak(x)

µ (B(x, (k + 2)qXN
))  22d(k + 2)dµ (B(x, qXN

/2))  23d(k + 2)d (1 + 2⇢(xn, x)/qXN
)d µ (B(xn, qXN

/2))

 24d(k + 2)2dµ (B(xn, qXN
/2)) .

Furthermore, by definition of the separation distance qXN
, we have B(xn, qXN

/2)\B(xm, qXN
/2) =

; if xn 6= xm 2 XN . Thus, since B(xn, qXN
/2) ⇢ B(x, (k + 2)qXN

) for every xn 2 Ak(x), we have
the rough estimate

µ (B(x, (k + 2)qXN
)) �

X

xn2XN\Ak(x)

µ (B(xn, qXN
/2))

� 2�4d(k + 2)�2d
µ (B(x, (k + 2)qXN

))#(XN \Ak(x)),
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which implies that

#(XN \Ak)  24d(k + 2)2d. (62)

In particular, there is some ⌧ > 2d + 4, which depends only on d such that there is a constant
C

1

> 0 with

1
X

k=1

#(XN \Ak(x)) k
d/2�⌧

< C

1

for all x 2 M and all XN ⇢ M. (63)

Next, we will need the following auxiliary lemma, which is in the spirit of [8, Proposition 4.2].

Lemma 5 Let b > 1, ⌧ > 2d + 4 be such that (63) holds, and let e 2 G(b). There are constants C,

C

1

> 0 such that, for all XN ⇢ M , all � < min{1, qXN
} and all x 2 M , we have for the associated

integral kernel E� the estimates

X

xn2XN
⇢(x,xn)�qXN

|E� (x, xn) |  C |B (x, �)|�1 (qXN
/�)d/2�⌧

, and

X

xn2XN
⇢(x,xn)<qXN

|E� (x, xn) |  C |B (x, �)|�1

. (64)

The constant C depends only on the parameters of the space, the constant c⌧ from (24), and the constant

C

1

from (63).

Proof We show the two inequalities separately. For all XN ⇢ M , all x 2 M and all �  min{qXN
, 1},

we have by (24), (63) and since d/2� ⌧ < 2d� ⌧ < 0

X

xn2XN
⇢(x,xn)�qXN

�

�E� (x, xn)
�

�  C |B (x, �)|�1

X

xn2XN
⇢(x,xn)>qXN

(1 + ⇢ (x, xn) /�)
d/2�⌧

 C |B (x, �)|�1

1
X

k=1

X

xn2Ak

⇣

1 + (kqXN
)/�

⌘d/2�⌧

 C |B (x, �)|�1

⇣

qXN
/�

⌘d/2�⌧ 1
X

k=1

#(XN \Ak) k
d/2�⌧  CC

1

|B (x, �)|�1 (qXN
/�)d/2�⌧

.

To show the second assertion, we note first that by (62) with k = 0 we have

#XN \B (x, qXN
)  26d for all x 2 M and all XN ⇢ M. (65)

Thus, we obtain by (24) and (65)

X

xn2XN
⇢(x,xn)qXN

|E� (x, xn) |  Cµ (B (x, �))�1

X

xn2XN
⇢(x,xn)qXN

⇣

1 +
⇢ (x, xn)

�

⌘d/2�⌧

 Cµ (B (x, �))�1 #(XN \B(x, qXN
))  Cµ (B (x, �))�1

,

which is exactly (64). ut
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For g 2 ⌃

p
[0,R]

and XN = {x
1

, . . . , xN} set

kgk`p(XN )

:=

8

<

:

⇣

PN
n=1

|g (xn)|p
⌘

1/p
if 1  p < 1,

maxn=1,...,N |g (xn)| if p = 1.

(66)

We will now, under suitable assumptions, derive explicit norm equivalence constants for k · k`p(XN )

and k · kLp
(M ;dµ) on ⌃

p
[0,R]

. The following lemma is in the spirit of [8, Theorem 4.3].

Lemma 6 Suppose that 1  p  1, R > 1, and let ⌧ > 2d+ 4 be such that (63) holds. Then there is

C > 0 such that, for all �  1, all g 2 ⌃

p
[0,R/�]

and all XN ⇢ M ,

kgk`p(XN )

 C(R)

8

<

:

supy2M µ (B (y, �))�1/p
⇣

1 + (qXN
/�)d/2�⌧

⌘

1/p
kgkLp

(M ;dµ) if 1  p < 1,

kgkL1
(M ;dµ) if p = 1.

(67)

Proof We follow the lines of [8, Theorem 4.3]. Let e 2 C

1 ([0,1)) with e|
[0,R]

⌘ 1. Then g =

e(�
pD)g for all g 2 ⌃

p
[0,R/�]

, and we thus get from Lemma 5

kgk`1(XN )

=
N
X

n=1

|g (xn)| =
N
X

n=1

�

�

�

e(�
p
D)g (xn)

�

�

�

=
N
X

n=1

�

�

�

�

Z

M

E� (xn, y) g(y) dµ (y)

�

�

�

�

 sup
y2M

N
X

n=1

|E�(xn, y)| kgkL1
(M ;dµ)  C sup

y2M
|B (y, �)|�1

⇣

1 + (qXN
/�)d/2�⌧

⌘

kgkL1
(M ;dµ) .

Since XN ⇢ M , we have kgk`1(XN )

 kgkL1
(M ;dµ). The assertion then follows by Riesz-Thorin

interpolation. ut
Now we are in the position to show that the translates S(`;�) (·, xn) for points xn 2 XN build

a weighted Riesz basis in L

p (M ; dµ). The following lemma is similar to a result from [22] which
holds for a less general class of compact metric measure spaces.

Lemma 7 Suppose that b � b̃

4/3 with b̃ > 1 from Remark 2 and let 1  p, p

0  1 such that 1

p +
1

p0 = 1.

There are constants c

0
, c, C > 0 and q

0

> 0 such that, for all N 2 N, all XN ⇢ M with qXN
 q

0

, all

` � logb

⇣

c

0
q

�1

XN

⌘

, all a = (a
1

, . . . , aN )T 2 RN and all � > 0, there holds

c sup
x2M

µ

⇣

B

⇣

x, b

�`
⌘⌘

1/p0
�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 kak`p(N)

 C max
1nN

sup
x2M

µ

⇣

B

⇣

xn, b
�`

⌘⌘

µ (B(x, b�`)) 1/p

�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

Lp
(M ;dµ)

, (68)

and similarly for p = 1.

Proof We prove the two inequalities separately. Recall from (38) that s(`;�)(u) = w(`;�)(b�`
u).

Since w(�)
` ⌘ w(�)

2

for all ` � 2 (see Lemma 3), we have by Lemma 5 with � = b

�`

�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

L1
(M ;dµ)

 kak`1(N)

sup
x2M

N
X

n=1

|S(`;�)(x, xn)|

 C kak`1 sup
x2M

µ

⇣

B

⇣

x, b

�`
⌘⌘�1

✓

1 +
⇣

qXN
b

`
⌘d/2�⌧

◆

, (69)
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where C is independent of `. Furthermore, from (26) we get

�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

L1
(M ;dµ)

 kak`1(N)

sup
x2M

Z

M

�

�

�

S(`;�)(y, x)
�

�

�

dµ(y)

= kak`1(N)

ks(`;�)(
p
D)kL1

(M ;dµ)!L1
(M ;dµ)  Ckak`1(N)

. (70)

Thus, combining (70) and (69), we obtain by Riesz-Thorin interpolation

�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 sup
x2M

µ

⇣

B

⇣

x, b

�`
⌘⌘�1/p0 ✓

1 +
⇣

qXN
b

`
⌘d(2p0�⌧/p0

)

◆

kak`p(N)

 c sup
x2M

µ

⇣

B

⇣

x, b

�`
⌘⌘�1/p0

kak`p(N)

.

This finishes the proof of the first inequality.
Since ⇢(xn, xm)�qXN

for xn 6= xm 2 XN , we get with Lemma 5

N
X

n=1
n 6=m

�

�

�

S(`;�) (xm, xn)
�

�

�

 cµ

⇣

B

⇣

xm, b

�`
⌘⌘�1

⇣

qXN
b

`
⌘d/2�⌧

. (71)

Furthermore, Lemma 3 implies that s(`;�) � c1
[b`, b`+3/4

]

, and we thus obtain from Remark 2 (note
that for q

0

> 0 small enough, the assumptions are satisfied)

S(`;�) (xm, xm) � c1[b`,b`+3/4] (xm, xm)=c1[b`,b3/4·b`] (xm, xm)

� c1[b`,˜b·b`] (xm, xm) � Cµ

⇣

B

⇣

xm, b

�`
⌘⌘�1

. (72)

Inserting (72) into (71) yields for ` � logb

⇣

c

0
q

�1

XN

⌘

N
X

n=1
n 6=m

�

�

�

S(`;�) (xm, xn)
�

�

�

 C

⇣

qXN
b

`
⌘d/2�⌧

S(`;�) (xm, xm)  1
2
S(`;�) (xm, xm) (73)

for some constant c

0
> 0 independent of `. We now proceed similarly to [8]. Consider the Gramian

matrix G :=
⇣

S(`;�)(xn, xm)
⌘

n,m=1,...,N
2 RN⇥N . Note that G is a symmetric matrix and satisfies

(see (73))
PN

n=1
n 6=m

�

�

�

S(`;�) (xm, xn)
�

�

�

 1

2

S(`;�) (xm, xm) for all m = 1, . . . N . By (72) and (10) we have

� := min
1nN

S(`;�)(xn, xn) � c min
1nN

⇣

µ

⇣

B(xn, b
�`)

⌘⌘�1

> 0. (74)

Hence, it follows from [8, Proposition 6.1] that G is invertible, and

�

�

�

G

�1

�

�

�

`p(N)!`p(N)

 ((1� 1/2)�)�1 for all 1  p  1. (75)
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We use (75) and (67) with R := b and � := b

�` to deduce for 1  p < 1

kak`p(N)

 kG�1k`p(N)!`p(N)

�

�

�

�

�

N
X

n=1

anS
(`;�)(·, xn)

�

�

�

�

�

`p(XN )

 C sup
x2M

max
1nN

µ

⇣

B

⇣

xn, b
�`

⌘⌘

(µ (B(x, b�`)))
1/p

⇣

1 + (qXN
b

`)d/2�⌧
⌘

1/p
�

�

�

�

�

N
X

n=1

anS
(`;�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 C sup
x2M

max
1nN

µ

⇣

B

⇣

xn, b
�`

⌘⌘

µ (B (x, b�`)) 1/p

�

�

�

�

�

N
X

n=1

anS
(`;�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

.

The assertion follows similarly for p = 1. ut

Remark 5 Since by (10) and (8) we have µ (B (y, r)) � cr

d for all y 2 M and all 0 < r < r

0

, we can
estimate the quantity on the right-hand side of (68) by

sup
x2M

max
1nN

µ

⇣

B

⇣

xn, b
�`

⌘⌘

(µ (B (x, b�`)))
1/p

 Cb

`d/p max
1nN

µ

⇣

B

⇣

xn, b
�`

⌘⌘

.

If additionally µ (B (y, r))  Cr

d for all y 2 M and r > 0, then (68) reduces to

cb

�`d/p0

�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 kak`p(N)

 Cb

�`d/p0

�

�

�

�

�

N
X

n=1

anS
(`;�) (·, xn)

�

�

�

�

�

Lp
(M ;dµ)

.

Note that the condition ` � logb(c
0
qXN

) in Lemma 7 couples the truncation index L to the sampling
points XN . Thus, we are in the position to analyze approximation schemes using the properly
truncated kernel. This is the first step towards a numerically feasible method for kernels that are
not given analytically but merely by an infinite series as in (1). Moreover, since the S(`;�) are
usually also not analytically given but must be approximated themselves, there is a second step
needed where a proper approximation of the truncated kernel is computed. This will be discussed
in Section 6. We now proceed along the general lines of [18,39]. We use the following short-hand
notation.

Notation 4 For � > d/2, N , L 2 N, a 2 RN , and XN = {x
1

, . . . , xN} ⇢ M set

I�;a;XN
(·) :=

N
X

n=1

anK
(�)(·, xn) =

N
X

n=1

an

1
X

`=0

b

�2�`S(`;�) (·, xn) , and

I(L)

�;a;XN
(·) :=

N
X

n=1

an

L
X

`=0

b

�2�`S(`;�) (·, xn) =
N
X

n=1

an�
⇣

b

�L
p
D
⌘

K(�) (·, xn) , (76)

where the last equation follows as in (47), i.e., using Lemma 1 in the last line, we have

L
X

`=0

b

�2�`S(`;�)(·, xn) =
L
X

`=0

b

�2�`g(`;�)(b�`
p
D)�`�(·, xn)

=
L
X

`=0

k(�)(
p
D)�`�(·, xn) =

L
X

`=0

�`�(
p
D)K(�)(·, xn)

= �(b�L
p
D)K(�)(xn, ·).
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Lemma 8 Suppose that b � b̃

4/3. Let 2� > d/p

0, 1  p  1, and 0 < � < 1. Then there are constants

C, q
0

> 0 such that for all discrete sets XN = {x
1

, . . . , xN} ⇢ M with separation distance qXN
 q

0

,

all L � C logb

⇣

Cq

�1

XN

⌘

and all a 2 RN , we have

�

�

�

I�;a;XN
� I(L)

�;a;XN

�

�

�

Lp
(M ;dµ)

 �

�

�I�;a;XN

�

�

Lp
(M ;dµ)

. (77)

Proof By definition, we have

�

�

�

I�;a;XN
� I(L)

�;a;XN

�

�

�

Lp
(M ;dµ)

=

�

�

�

�

�

�

N
X

n=1

an

1
X

`=L+1

b

�2�`S(`;�)(·, xn)
�

�

�

�

�

�

Lp
(M ;dµ)


1
X

`=L+1

b

�2�`

�

�

�

�

�

N
X

n=1

anS
(`;�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

. (78)

If we choose C > c

0, we have by Lemma 7, for all ` � L+ 1

�

�

�

�

�

N
X

n=1

anS
(`;�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 C sup
x2M

µ

⇣

B(x, b�`)
⌘�1/p0

kak`p(N)

 C̃b

`d/p0kak`p(N)

, (79)

where in the last step we used (10) and (8) which imply that µ

⇣

B(x, b�`)
⌘

� Cb

�`d. Using (79) to

further estimate (78), we obtain

�

�

�

I�;a;XN
� I(L)

�;a;XN

�

�

�

Lp
(M ;dµ)

 C

1
X

`=L+1

b

(d/p0�2�)` kak`p(N)

 Cb

�L(2��d/p0) kak`p(N)

. (80)

Choose now ˜̀2 N such that logb(c
0
q

�1

XN
)  ˜̀ 2 logb(c

0
q

�1

XN
). Note that this is possible if q

0

is small
enough. Then we obtain by Lemmata 7 and 4, and Remark 5

kak`p(N)

 Cb

˜`d/p sup
x2M

µ

⇣

B

⇣

x, b

�˜`
⌘⌘

�

�

�

�

�

N
X

n=1

anS
(

˜`;�)(·, xn)
�

�

�

�

�

Lp
(M ;dµ)

 Cb

˜`d/p sup
x2M

µ

⇣

B

⇣

x, b

�˜`
⌘⌘

b

2�˜`

�

�

�

�

�

N
X

n=1

anK
(�)(·, xn)

�

�

�

�

�

Lp
(M ;dµ)

 Cq

�(2�+d/p)
X

�

�I�;a;XN

�

�

Lp
(M ;dµ)

(81)

since µ (B(x, cqXN
))  C. Using this to further estimate (80), we obtain

�

�

�

I�;a;XN
� I(L)

�;a;XN

�

�

�

Lp
(M ;dµ)

 Cb

L(d/p0�2�)
q

�(2�+d/p)
XN

�

�I�;a;XN

�

�

Lp
(M ;dµ)

 �

�

�I�;a;XN

�

�

Lp
(M ;dµ)

,

if L � 2�+d/p
2��d/p0 logb(Cq

�1

X ) and if q
0

> 0 is chosen small enough. ut
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5.1 Interpolation with truncated kernel

We now focus on the Hilbert space B�
2,2(M ;D) and suppose that � > d/2. We are interested in the

analysis of reconstruction methods based on truncated kernels. To this end, for given data f(xn)
at some scattered locations xn 2 XN = {x

1

, . . . , xN} ⇢ M , we consider trial spaces of the form (cf.
also (4))

L(L)

XN
:= span

n

�(b�L
p
D)K(�)(·, xn) : xn 2 XN

o

= span{K(�,L)(x
1

, ·), . . . , K(�,L)(xN , ·)}. (82)

Note that truncated kernels of the form �(b�L+1

pD)K(�) are in general only positive semi-definite,

so that the existence of an interpolant from L(L)

XN
to arbitrary given data is not obvious.

Remark 6 Note that K

(�,L) is the reproducing kernel of
⇣

⌃

[0,bL]

, (·, ·)B�
2,2(M ;D)

⌘

.

We follow the general lines of [18] and first derive a lower bound on the truncation index L (de-
pending on the point set XN ) such that, for arbitrary values, there always exists an interpolant

from L(L)

XN
. The following lemma corresponds to [18, Proposition 3.3], but in contrast to the situ-

ation considered there, we do not exploit orthogonality properties here. We will use the notation
introduced in (76).

Lemma 9 Suppose that b � b̃

4/3. There are constants C > 0, q
0

> 0 and  > 1 such that, for all N ,

L 2 N, all XN = {x
1

, . . . , xN} ⇢ M with qXN
 q

0

and L � logb(Cq

�1

XN
), and for all a 2 RN , we have

kzk
(B�

2,2(M ;D))

0  

�

�

�

�

z|⌃2
[0,bL]

�

�

�

�

✓
⌃2

[0,bL]

◆0 for z :=
N
X

n=1

an�xn , (83)

where again k · k
(B�

2,2(M ;D))

0 denotes the dual norm.

Proof By Riesz’ representation theorem, we have kzkB�
2,2(M ;D)

0 =
�

�I�;a;XN

�

�

B�
2,2(M ;D)

and fur-

thermore

�

�

�

�

z|⌃2
[0,bL]

�

�

�

�

✓
⌃2

[0,bL]

◆0 =
�

�

�

I(L)

�;a;XN

�

�

�

B�
2,2(M ;D)

. To estimate the Besov-norms, we employ a

smoothness shift in the spirit of [8]. Precisely, we have (see the proof of Proposition 2)

�

�I�;a;XN

�

�

2

B�
2,2(M ;D)

=
N
X

n,m=1

anam

 

k(�)(
p
D)

1
X

`=0

�`�(·, xn),
1
X

`=0

�`�(·, xm)

!

L2
(M ;dµ)

=

�

�

�

�

�

(k(�)(
p
D))1/2

1
X

`=0

�`

N
X

n=1

an�(·, xn)
�

�

�

�

�

2

L2
(M ;dµ)

. (84)

Note that we have by (34)

1

2
p
2
(u� + 1)  (k(�))�1/2(u)  b

�(u� + 1) for all u 2 [0,1),

and thus there are constants c�, C� > 0 such that c�k
(�/2)(u)  (k(�)(u))1/2  C�k

(�/2)(u) for all
u 2 [0,1). Thus, we can further estimate the left hand side in (84)

�

�I�;a;XN

�

�

2

B�
2,2(M ;D)

⇠
�

�

�

�

�

k(�/2)(
p
D)

1
X

`=0

�`

N
X

n=1

an�(xn, ·)
�

�

�

�

�

2

L2
(M ;dµ)

=
�

�I�/2;a;XN

�

�

2

L2
(M ;dµ)

, (85)
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where the notation ⇠ indicates that the two norms are equivalent with norm equivalence constants
that depend only on � and the parameters of the space. Similarly,

�

�

�

I(L)

�;a;XN

�

�

�

B�
2,2(M ;dµ)

⇠
�

�

�

I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

.

Therefore, to prove (83), it su�ces to show that there is a constant ̃ > 1 such that

�

�I�/2;a;XN

�

�

L2
(M ;dµ)

 ̃

�

�

�

I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

. (86)

By Lemma 8, we have (note that 2�/2 > d/2 and L � logb(c
0
q

�1

XN
))

�

�I�/2;a;XN

�

�

L2
(M ;dµ)


�

�

�

I�/2;a;XN
� I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

+
�

�

�

I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

 �

�

�I�/2;a;XN

�

�

L2
(M ;dµ)

+
�

�

�

I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

,

with � 2 (0, 1) from (77), and thus with ̃ := 1

1��

�

�I�/2;a;XN

�

�

L2
(M ;dµ)

 ̃

�

�

�

I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

,

i.e., we obtain (86). This concludes the proof. ut

Following [18], we now invoke an abstract result from [37, Proposition 3.1].

Proposition 5 Let Y be a Banach space, V ⇢ Y a subspace, and Z 0 a finite-dimensional subspace of

the dual space Y 0. If for every z

0 2 Z 0 and some �̂ > 1 independent of z0

�

�

z

0�
�

Y0  �̂

�

�

z

0|V
�

�

V0 , (87)

then, for any y 2 Y there exists v = v(y) 2 V such that v(y) interpolates y on Z 0, that is, z

0 (y) =
z

0 (v(y)) for all z0 2 Z 0. In addition v(y) approximates y in the sense that

kv(y)� ykY  (1 + 2�̂) distY (y,V) ,

where distY (y,V) := infv2V ky � vkY .
We now apply Proposition 5 with

Y = B�
2,2(M ;D), V = ⌃

2

[0,bL]

and Z 0 := {�xn : xn 2 XN} (88)

and use Lemma 9 to obtain the following result.

Theorem 7 Suppose that b � b̃

4/3. There are q

0

> 0 and c

0
> 0 such that, for every N , L 2 N,

XN = {x
1

, . . . , xN} ⇢ M with qXN
 q

0

and L � logb(c
0
q

�1

XN
), and for every f 2 B�

2,2(M ;D), there is

an fL 2 ⌃

2

[0,bL]

satisfying

f(xn) = fL(xn) for all xn 2 XN , and kf � fLkB�
2,2(M ;D)

 (1 + 2�) distB�
2,2(M ;D)

(f,⌃2

[0,bL]

)

(89)

Note that the result states that there always exists an interpolant which is also a quasi-optimal
approximant. We can then follow the lines of [18, Theorem 4.1] and obtain that under the as-

sumptions of Theorem 7, there exists a quasi-optimal interpolant from L(L)

XN
. Precisely, we have the

following result.
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Proposition 6 Suppose that b � b̃

4/3. There exists C > 0 with the following property: Let q
0

> 0 and

c

0
> 0 be as in Theorem 7. Then, for every N , L 2 N, XN = {x

1

, . . . , xN} ⇢ M with qXN
 q

0

and

L � logb(c
0
q

�1

XN
), and for every f 2 B�

2,2(M ;D) there is a = (a
1

, . . . , aN )T 2 RN such that I(L)

�;a;XN

satisfies

I(L)

�;a;XN
(xn) = f(xn) for all xn 2 XN and

�

�

�

f � I(L)

�;a;XN

�

�

�

B�
2,2(M ;D)

 CkfkB�
2,2(M ;D)

.

Proof The proof follows as in [18, Theorem 4.1], and we recall it only for completeness. By Theorem
7, there exists fL 2 ⌃

2

[0,bL]

such that (89) holds. In particular, we can view the data f(xn) as

generated by fL. Thus, since K

(L,�) is the reproducing kernel of ⌃2

[0,bL]

, there exists a kernel based

interpolant I(L)

�;a;XN
such that

I(L)

�;a;XN
(xn) = fL(xn) = f(xn) for all xn 2 XN , and

�

�

�

fL � I(L)

�;a;XN

�

�

�

B�
2,2(M ;D)

 kfLkB�
2,2(M ;D)

.

The assertion then follows by triangle inequality since kf�I(L)

�;a;XN
kB�

2,2(M ;D)

 kf�fLkB�
2,2(M ;D)

+

kfL � I(L)

�;a;XN
kB�

2,2(M ;D)

and kfL � I(L)

�;a;XN
kB�

2,2(M ;D)

 kfLkB�
2,2(M ;D)

 kf � fLkB�
2,2(M ;D)

+
kfkB�

2,2(M ;D)

.
ut

5.2 Stability of kernel based methods

In this section we give two important stability properties for the approximation with trial spaces
LXN

. Both results can be seen as corollaries to Lemma 8 but are, in our opinion, interesting in
their own. The first one is a Bernstein estimate on the finite dimensional trial space LXN

. Such
estimates are crucial to the analysis of various kinds of unsymmetric reconstruction methods (see,
e.g., [45]). We continue to use the notation introduced in (76).

Proposition 7 Suppose that b � b̃

4/3. There are constants q

0

> 0 and C > 0 such that, for all discrete

point sets XN = {x
1

, . . . , xN} ⇢ M with qXN
 q

0

and all a 2 RN , we have
�

�I�;a;XN

�

�

B�
2,2(M ;D)

 Cq

��
XN

�

�I�;a;XN

�

�

L2
(M ;dµ)

.

Proof We choose L � logb(c
0
q

�1

XN
). From (34) and (86), it follows that

�

�I�;a;XN

�

�

B�
2,2(M ;D)

⇠
�

�I�/2;a;XN

�

�

L2
(M ;dµ)

 C

�

�

�

I(L)

�/2;a;XN

�

�

�

L2
(M ;dµ)

⇠
�

�

�

(Id+D�/2)I(L)

�;a;XN

�

�

�

L2
(M ;dµ)

. (90)

On ⌃

2

[0,bL]

, there is an inverse estimate from [10, Theorem 3.13]. Precisely, it holds
�

�

�

(Id+D�/2)f
�

�

�

L2
(M ;dµ)

 Cb

�L kfkL2
(M ;dµ) for all f 2 ⌃

2

[0,bL]

. (91)

Since I(L)

�;a,XN
2 ⌃

2

[0,bL]

we obtain, inserting (91) into (90)

�

�I�;a;XN

�

�

B�
2,2(M ;D)

 Cb

�L
�

�

�

I(L)

�;a;XN

�

�

�

L2
(M ;dµ)

 Cb

�L
�

�I�;a;XN

�

�

L2
(M ;dµ)

 Cq

��
XN

�

�I�;a;XN

�

�

L2
(M ;dµ)

.

This concludes the proof. ut
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The second result concerns lower bounds on the smallest eigenvalue of Gramian matrices K(�)
XN ,XN

=
⇣

K

(�)(xn, xm)
⌘

n,m=1,...,N
. Such bounds are of importance in practical considerations since the

condition number of the Gramian matrix is mainly controlled by the smallest eigenvalue. Hence
lower bounds on the smallest eigenvalue imply upper bounds on the condition number of the
Gramian K

(�)
XN ,XN

.

Proposition 8 Let � > d/2. There are constants q

0

> 0 and C > 0 such that for all sets XN =
{x

1

, . . . , xN} ⇢ M with qXN
 q

0

, we have

�

min

⇣

K

(�)
XN ,XN

⌘

� Cq

2�+d
XN

. (92)

If µ (B (y, r))  Cr

d for all y 2 M and all r > 0, then

�

min

⇣

K

(�)
XN ,XN

⌘

� Cq

2��d
XN

. (93)

Proof We closely follow the lines of [8, Theorem 4.5]. Note that we get from (85) that we have for
all a 2 RN

aT
⇣

K

(�)
XN ,XN

⌘

a =
�

�I�;a;XN

�

�

2

B�
2,2(M ;D)

� C

�

�I�/2;a;XN

�

�

2

L2
(M ;dµ)

.

Then, by Lemmata 4 and 7 with p = 2 and ` ⇠ log(c0q�1

XN
), we have using Cr

d  µB (y, r)  C

�

�I�/2;a;XN

�
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� Cb

�2�`

�

�

�
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X
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anS
(`;(�/2)(xn, ·)

�

�

�

�

�

2

L2
(M ;dµ)

� kak2`2(N)

b

�2�`

0

@ sup
x2M
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1nN

µ
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B(xn, b�`)
⌘

µ (B (x, b�`))
1/2

1

A

�2

� kak2`2(N)

b

�`(2�+d) �Cq

2�+d
XN

kak2`2(N)

(94)

This concludes the proof since

�

min

⇣

K

(�)
XN ,XN

⌘

= min
kak`2(N)=1

aT
⇣

K

(�)
XN ,XN

⌘

a � Cq

2�+d
XN

.

The proof of (93) works analogously, using in (94) the bound

sup
x2M

max
1nN

µ

⇣

B(xn, b�`)
⌘

µ (B (x, b�`))
1/2

⇠ b

�`d/2
.

ut
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5.3 Relation to complexity estimates in statistical learning theory

At this point, let us recall the concept of a covering number from statistical learning theory [11,
Definition 3.1].

Definition 3 Let M be a metric space and ⌘ > 0. The ⌘-covering number N (M, ⌘) is defined as

N (M, ⌘) = min

8

<

:

n 2 N [ {1} : there exists Yn = {y
1

, . . . , yn} ⇢ M such that
n
[

j=1

B(yj , ⌘) � M

9

=

;

.

(95)

For a reproducing kernel Hilbert space HK(M), we denote the norm-balls by

BK(R) := {f 2 HK(M) : kfkHK
 R} (96)

and we denote the embedding jK : HK(M) ,! C(M). There is a result [62, Theorem 1] which
holds for M being a compact metric space and µ a Borel measure on it and which states that for
0  ⌘  R

2

ln
⇣

N
⇣

jK(BK(R)), ⌘
⌘⌘

 #Yn ln

✓

8 kKk
3
2

L1
(M⇥M)

#Yn

�

�

�

K

�1

Yn,Yn

�

�

�

`2(N)!`2(N)

R

⌘

◆

(97)

where Yn ⇢ M with n 2 N is such that
�

�

PK;Yn

�

�

L1
(M)

 ⌘

2R
. (98)

Here, the quantity

PK;Yn
(x) := min

a(x)2Rn

�

�

�

�

�

�

�x �
X

⇠2Yn

a⇠(x)�⇠

�

�

�

�

�

�

H0
K

(99)

is the so called power function [49]. If unique interpolation with the kernel is possible, the optimal
functions ay(x) can be computed and are given by the cardinal functions. Since the quantity (99)
measures the interpolation error, we can invoke our sampling inequality to obtain with Theorem
6, HK = B�

2,2(M ;D) and K = K

(�)

�

�

PK;Yn

�

�

L1
(M)

 Ch

��d/2
Yn,M

. (100)

Also by (92), we have
�

�

�

K

�1

Yn,Yn

�

�

�

`2(N)!`2(N)

 �

�1

min

⇣

K

(�)
Yn,Yn

⌘

 Cq

�2��d
Yn

We assume quasi-uniformity, i.e., there is a constant c < 1 such that chYn,M  qYn
 hYn,M holds.

Here, we use the notation a

⇠= b to indicate that there are constants c, C > 0 such that ca  b  Ca

and similarly for &. For any quasi-uniform set of points Yn such that h

��d/2
Yn,M

⇠= ⌘
2R , we have

#Yn

�
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�
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�d
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. h

��d/2
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⇠= ⌘

2R
,

using #Yn
⇠= h

�d
Yn,M

. Hence, we get

R

⌘
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��+d/2
Yn,M

. (#Yn)
�1

�

�

�

K

�1

Yn,Yn

�
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1/2

`2(N)!`2(N)
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Inserting this into the bound (97), we arrive at2

ln
⇣

N
⇣

jK(BK(R)), ⌘
⌘⌘

. h

�d
Yn,M

ln
⇣

h

3
2 (�2��d)
Yn,M

⌘

.
✓

R

⌘

◆

2d
2��d

ln

✓

R

⌘

◆

. (101)

6 Regularized reconstruction

From now on, we assume that µ(M) < 1. Since in this case the spectral spaces ⌃p
[0,R]

are equivalent

for all 1  p  1, we skip the parameter p. We consider the reconstruction of functions f 2
B�
2,2(M ;D), � > d/2, from given data yn ⇡ f(xn) at discrete points XN = {x

1

, . . . , xN} ⇢ M . An

approximant ĝ

(y;↵;XN ) is given as a minimizer of the smoothing-type functional from (2), i.e.,

Jy;↵;XN
: ⌃

[0,bL]

! R, Jy;↵;XN
(g) =

N
X

n=1

(g(xn)� yn)
2 + ↵kgk2B�

2,2(M ;D)

(102)

with a regularization parameter ↵ � 0. For the ease of notation, we restrict ourselves to the case
of exact data

yn = f(xn) for all n = 1, . . . N. (103)

In this section, we follow the general lines of [45,46,59] but take into account also the di�culty
that the (truncated) kernel might be available only approximately. If the given data is corrupted
by some additive noise, one can use the same machinery outlined below to derive error estimates
which are explicit in terms of the noise (see [46]). Also, we restrict ourselves to the spline-smoothing
regularization but point out that various kinds of additional regularization terms can be treated
analogously (see [46,45]). For some results in this direction using weak data we refer to [45].
We shall show by a representer theorem that for L large enough, a minimizer ĝ

(y;↵;XN ) of (2) can
be computed by solving a finite linear system which is built of translates of the truncated kernel.
Furthermore, a deterministic error analysis will be derived by means of the sampling inequalities
proven in Section 4. We first shall consider the (special) case of exact spectral projections, the case
of numerically computed, approximated eigenfunctions of D will be dealt with afterwards.

We consider the spectral spaces ⌃
[0,bL]

(see (29)) as reproducing kernel Hilbert spaces. Precisely,
we denote the ordered eigenvalues of D by 0 < �

1

 �

2

 . . . and the associated orthonormal
eigenfunctions '

(`)
m , m = 1, . . . ,dimV`, ` = 1, 2, . . . , where V` denotes the eigenspace to �`. On

⌃

[0,bL]

, we have the norm (recall that supp (b�`·) ⇢ [b`�1

, b

`], see Definition 2)

kfk2B�
2,2(M ;D)

=
L
X

`=0

b

2�`
1
X

`0=0

 2

` (
p

�`)

dim(V`0 )
X

i=1

�

�(f,'(`0)
i )L2

(M ;dµ)

�

�

2

, f 2 ⌃

[0,bL]

.

For � > d/2, the reproducing kernel of ⌃
[0,bL]

can be expressed as

K

(�,L)(x, y) =
L
X

`=0

b

�2�`S(`;�)(x, y) =
1
X

`=0

�

k(�)(
p

�`)
��1

�(b�L
p

�`)
dim(V`)
X

i=1

'

(`)
i (x)'(`)

i (y).

We are now in the position to give a representer theorem and a priori error estimates for minimizers
of (2).

2 There are also lower bounds for the covering number cf. [11, Theorem 5.21].
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Theorem 8 Let � > d/2. There are constants c0, C, h
0

> 0 such that, for all XN = {x
1

, . . . , xN} ⇢ M

with hXN ,M  h

0

, all L 2 N with L � logb

⇣

c

0
q

�1

XN

⌘

and all f 2 B�
2,2(M ;D), there exists a minimizer

ĝ

(y;↵;XN ) of (2) with data (103) such that

ĝ

(y;↵;XN ) 2 span{K(�,L)(x
1

, ·), . . . ,K(�,L)(xN , ·)}. (104)

Furthermore, there is the a priori estimate
�

�

�

f � ĝ

(y;↵;XN )

�

�

�

L1
(M ;dµ)

 C

⇣

h

��d/2
XN ,M +

p
↵

⌘

kfkB�
2,2(M ;D)

. (105)

Proof By Theorem 7, there exists fL 2 ⌃

[0,bL]

such that

fL(xn) = f(xn) for all xn 2 XN , and kfLkB�
2,2(M ;D)

 C kfkB�
2,2(M ;D)

.

Thus, we can view the data yn = f(xn) = fL(xn) to be generated by a function fL 2 ⌃

[0,bL]

. By a
classical representer theorem (see, e.g., [50]) applied to the reproducing kernel Hilbert space ⌃

[0,bL]

,

there is a solution ĝ

(y;↵;XN ) 2 span{K(�,L)(x
1

, ·), . . . ,K(�,L)(xN , ·)} to the optimization problem
(102). We furthermore get the following stability and consistency estimates: First, we have

↵

�

�

�

ĝ

(y;↵;XN )

�

�

�

2

B�
2,2(M ;D)

 Jy;↵;XN

⇣

ĝ

(y;↵;XN )

⌘

 Jy;↵;XN
(fL) = ↵ kfLk2B�

2,2(M ;D)

 ↵ kfk2B�
2,2(M ;D)

,

which shows that

kf � ĝ

(y;↵;XN )kB�
2,2(M ;D)

 kfkB�
2,2(M ;D)

+ kĝ(y;↵;XN )kB�
2,2(M ;D)

 2kfkB�
2,2(M ;D)

. (106)

Second, we get similarly

max
1nN

�

�

�
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(y;↵;XN ))(xn)
�

�

�

2


N
X
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.

Therefore, we obtain by Theorem 6 the estimate
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.

ut

The fact that the solution to a possibly infinite optimization problem is contained in a finite-
dimensional linear space is usually called representer theorem. Thus (104) is indeed a representer
theorem and hence a minimizer of (2) can be computed by solving the linear system with y =
f |XN

2 RN

⇣

K

(�,L)

XN ,XN
+ ↵ Id

⌘

ĉ = y (107)

for the coe�cient vector ĉ of ĝ(y;↵;XN )(·) = PN
n=1

ĉnK
(�,L)(·, xn). Here, an entry of the Gramian

matrix K

(�,L)

XN ,XN
2 RN⇥N is given by

⇣

K

(�,L)

XN ,XN

⌘

n,m
= K

(�,L)(xn, xm) =
1
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k(�)(
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��1

L
X
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�b;`0�(
p

�`)
dim(V`)
X

i=1

'

(`)
i (xn)'

(`)
i (xm).
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To set up this matrix, one needs to compute the values '

(`)
m (xi) and �`.

Unfortunately, the eigenfunctions '

(`)
m and eigenvalues �` of D are typically not available in

analytically closed form, but can only be numerically computed up to some error. We therefore
assume that there are level dependent errors "` � 0 such that a corrupted kernel K(�,L)

" is at hand,
for which

�

�

�

(K(�,L)

" �K

(�,L))(xn, xm)
�

�
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1
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k(�)(
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�`)
��1

�
⇣

b

�L
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⌘

"

2

` dim(V`),

for all n,m = 1, . . . , N , where some prescribed accuracy "

max

is respected, i.e.,

1
X

`=0

�

k(�)(
p

�`)
��1

�
�

b

�L
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�`

�

"

2

` dim(V`)  "

max

. (108)

Thus, instead of working with the practically unavailable optimal system (107), we compute an
approximant

ĝ

(y;↵;XN )

" (·) =
N
X

n=1

ĉ

(")
n (f)K(�,L)

" (·, xn) (109)

with coe�cients ĉ" 2 RN given as solution of
⇣

K

(�,L,")
XN ,XN

+ ↵ Id
⌘

ĉ(") =
⇣

K

(�,L)

XN ,XN
+R" + ↵ Id

⌘

ĉ" = y with |(R")n,m|  "

max

, (110)

where (K(�,L,")
XN ,XN

)n,m := K

(�,L)

" (xn, xm) for n,m = 1 . . . N and with y = f |XN
2 RN . We obtain the

following deterministic error estimate for this approximant.

Theorem 9 There is a constant C > 0 such that, for all sets XN = {x
1

, . . . , xN} ⇢ M , all L �
logb

⇣

Cq

�1

XN

⌘

, all ↵ > N"

max

and every f 2 B�
2,2(M ;D), we have for ĝ

(y;↵;XN )

" given by (109) and

(110) with data y 2 RN given by (103)
�
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Proof In view of Theorem 8, it su�ces to estimate the error
�

�

�

ĝ

(y;↵;XN ) � ĝ

(y;↵;XN )

"

�

�

�

L1
(M ;dµ)

. For

that, we proceed in two steps and first estimate the error in the coe�cients and deduce subsequently
the error in the function values. We employ the following classical result of perturbation theory
(see, e.g., [60]). Suppose that the matrix A 2 RN⇥N has full rank, and let �A 2 RN⇥N be such that
kA�1k`2(N)!`2(N)

k�Ak`2(N)!`2(N)

< 1. For a given vector b 2 RN \ {0} let the vectors z, �z 2 RN

be such that Az = b and (A+ �A)(z+ �z) = b. Then
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We apply this result with A := K

(�,L)

XN ,XN
+ ↵ Id, �A := R", �z = ĉ � ĉ✏ and z = ĉ. If we denote by

�
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(A) and �
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(A) the largest and smallest eigenvalues of a matrix A, respectively, then
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Since furthermore kR"k`2(N)!`2(N)

 N"

max

, the condition kA�1k`2(N)!`2(N)

k�Ak`2(N)!`2(N)

< 1
is satisfied if N"

max

< ↵. Hence by (112) and the definition of ĉ, we obtain
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We now turn to the approximants and note that by the triangle inequality
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We estimate the two terms of the right hand side of (114) separately. First, by Hölder’s inequality
and (113) we have
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and second,
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ĉn

⇣

K

(�,L)

" (·, xn)�K

(�,L)(·, xn)
⌘

�

�

�

�

�

L1
(M ;dµ)


N
X

n=1
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Putting together (114), (115) and (116) we obtain
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and the assertion then follows by Theorem 8 since
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(y;↵;XN )

"

�

�

�

L1
(M ;dµ)


�

�

�

ĝ
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This concludes the proof. ut



Approximation in Besov-type RKHS 33

Note that Theorem 9 provides an error estimate which is explicit in the problem parameters "

max

and ↵. We shall now outline how to choose these parameters in order to ensure asymptotic conver-
gence3.

Corollary 2 Suppose that the assumptions of Theorem 9 are valid and suppose additionally that for

N ! 1 it holds that 1/
p
N kf |XN

k`2(XN )

! kfkL2
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.

6.1 Relation to error analysis for statistical regression theory

Here, we closely follow [51], see also [28] for recent applications of spherical needlet kernels in
learning theory. The problem can be formulated as follows: We are given a probability measure P
on M ⇥R where M ⇢ Rn is supposed to be a compact set and try to recover a function f : M ! R
from its sampled values (xi, yi) 2 M ⇥R for 1  i  N and xi 6= xj for i 6= j. Moreover, we assume
K to be the reproducing kernel of B�

2,2(M ;D) for � > d/2. We define the expressions [51, Eq.s 2.1
& 2.2]

E(f) :=
Z

M⇥R
(f(x)� y)2 dP(x, y), Ey(f) := 1

N

N
X

i=1

(f(xi)� yi)
2

,

which are called least squares error and empirical error. We denote their respective minimizers by

f

?(x) :=

Z

R
y dP(y|x)

Iy,XN
:= arg min

f2jK(BK(R))

Ey(f) =
N
X

i=1

yiaxi ,

with the cardinal functions axi as in the definition of the power function (99). The fact that f

? is
indeed minimizing the least squares problem follows from [11, Prop. 1.8], where for any f : M ! R
being square-integrable the decomposition

E(f) =
Z

M

�

f(x)� f

?(x)
�

2

dµ(x) + E(f?),

with µ being the marginal measure on M is shown. Furthermore, we define the target function from
[51]

f

R := arg min
f2jK(BK(R))

E(f) = inf
f2BK(R)

E(f)

with BK(R) from (96). We point out here, that both functions f? and Iy,XN
are not at our disposal.

The first one is the unknown global solution and the second one is not available since we cannot

3 For practical consideration other parameter choices could be more useful. We do not give the details here,
but leave those considerations to the reader since we work in a very general framework and hence do not have a
model for the numerical costs for realizing "

max

. In many specific application estimate for these cots are available
and can be employed in an exhaustive cost-benefit discussion.
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evaluate the kernel directly. We therefore use the function ĝ

(y;↵;XN )

" as an approximation for the
latter. The aim is to give an upper bound of the error

Z

M

⇣

f

?(x)� ĝ

(y;↵;XN )

" (x)
⌘

2

dµ(x) .
Z

M

�

f

?(x)� Iy,XN
(x)
�

2

dµ(x)

+

Z

M

⇣

ĝ

(y;↵;XN )

" (x)� Iy,XN
(x)
⌘

2

dµ(x). (117)

The latter error is already bounded in Corollary 2 if M and µ satisfy all conditions given there.
The first term is the usual error in statistical learning theory. It is decomposed into the sampling
error and the approximation error, i.e.,

Z

M

�

f

?(x)� Iy,XN
(x)
�

2

dµ(x) = E(Iy,XN
)� E(f?)

=
⇣

E(Iy,XN
)� E(IR

y,XN
)
⌘

+

Z

M

⇣

f

R(x)� f

?(x)
⌘

2

dµ(x)

where the first summand, i.e., the content of the first bracket is called sampling error and the
second term is called approximation error (see [51]). Under the assumption that there is a constant
V > 0 such that |f(x)� y|  V , we have the bound [51, Eq. (2.6)]

Prob
n⇣

E(Iy,XN
)� E(IR

y,XN
)
⌘
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o

� 1�N
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24V
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288V 2
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24V
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2d
2��d

ln

✓

24V
R

⌘

◆

!

exp

✓

� N⌘

288V 2

◆

for all ⌘ > 0, were we used (101) in the last step. For the approximation error, we can use the
following result from interpolation theory, [51, Thm. 3.1]: We have that L

2(M ; dµ) is a dense
subspace of B

�
2,2(M ;D) such that kfkL2

(M ;dµ)  ckfkB�
2,2(M ;D)

. For 0 < ✓ < 1 we assume f 2
�

L

2(M ; dµ), B�
2,2(M ;D)

�

✓,1. Then we have [51, Thm. 3.1]

inf
g2BK(R)

kf � gkL2
(M ;dµ)  R

� ✓
1�✓ kfk(L2

(M ;dµ),B�
2,2(M ;D))

✓,1

By the equivalence of the Besov spaces B�
2,2(M ;D) to the Bessel potential spaces dom(Id+

pD)2�

and [10, Proposition 6.2 & Theorem 3.16] we get
⇣

L

2(M ; dµ), B�/✓
2,2 (M ;D)

⌘

✓,1
⇡ B

�
2,1(M ;D). The

final error bounds for (117) now stem from an optimization with respect to R, see [51] for an
example of such calculations. For the sake of brevity, we do not give the lengthy computations
here.

7 Concluding remarks

We derived an explicit representation of the reproducing kernel for Besov spaces in the abstract
framework of metric measure spaces, see Proposition 2. As fundamental step towards a priori error
estimates for reconstruction schemes in such Besov spaces we proved sampling inequalities, see
Theorem 6. Such sampling inequalities quantify the observation that a reconstruction scheme with
small residuals has small global error as long as it is stable in the Besov space norm. In order to
design numerically feasible approximation schemes, we discussed the truncation of the infinite series
representation of the kernel in Theorem 7. We gave an explicit condition to couple the truncation
parameters to the discrete point set which guarantees well-posedness and quasi-optimality of the
reconstruction process. Furthermore, sampling inequalities lead also to a priori error estimates for



Approximation in Besov-type RKHS 35

regularized reconstruction schemes, see Theorem 9. The resulting error bounds are explicit in the
regularization parameters, the discretization error and the modeling error, and therefore allow for a
balancing these terms. Finally, we explained how the well-established machinery of error estimates
for statistical learning can be applied here.

Appendix

In this appendix, we give an explicit bound on the constant b̃ of Remark 2 for the Euclidean space
Rd, where we closely follow the lines of the proof of the statement in [10, Lemma 3.19]. We recall
the general strategy first, and then perform the necessary estimates in our setting. For measurable
sets ⌦ ⇢ Rd, we set |⌦| := µ(⌦). In this case, (8) and (9) hold with � = d, i.e.,

0 < |B(x, 2t)| = 2d|B(x, t)| for all x 2 Rd
, and all t > 0.

Furthermore,

|B(x,
p
t)| = (⇡t)d/2

� (d
2

� 1)
, and pt(x, y) =

1

(4⇡t)d/2
exp

⇣

�kx� yk2/(4t)
⌘

.

Consequently,

pt(x, x) = (4⇡t)�d/2 =
1

2d� (d/2 + 1)
|B(x,

p
t)|�1

,

and in particular, if 1 denotes the characteristic function,

1
[0,⌧ ](

p
D)(x, x)  e · p⌧�2(x, x) =

e

2d� (d/2 + 1)
|B(x, ⌧�1)|�1 for all ⌧ > 0. (118)

It is shown in [10, Lemma 3.19] that for ⌧ > 0 and r 2 N, we can set ⌧

p
t = 2r such that

2�rd

|B(x, ⌧�1)|

0

@

c

0 � 2dc
4

X

k�r

exp(�22k)2kd

1

A  1
[0,⌧ ](x, x),

holds, where the constants c

4

:= e
2

d� (d/2+1)

=: ec0 can be obtained from (118). Hence, to make the

lower bound positive, we need to choose r 2 N large enough such that

exp(�1) >
X

k�r

exp(�22k)2kd. (119)

Once we have an appropriate r 2 N at hand, we follow the argument in [10] and set (see [10, (3.44)])

c

3

:=
2�r

2d� (d/2 + 1)

0

@1�
X

k�r

exp(�22k)2(k+1)d

1

A

> 0,

and choose a ` > 0 large enough such that

0 < c

3

2d` � c

4

. (120)

Then, following the proof of [10, Lemma 3.19], we may set b̃ := 2`.

Lemma 10 If we choose r(d) 2 N as the smallest integer such that

r(d) � 7
2 ln(2)

ln

✓

d ln(2) + 1
2 ln(2)

◆

,

then (119) holds.
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Proof We determine r 2 N such that

exp(�22k)2(k+1)d
< e

�k for all k � r, (121)

since then
X

k�r

exp(�22k)2kd <

X

k�r

exp(�k) = exp(�(r + 1))/(1� e

�1)  2 exp(�(r + 1))

< 2 exp(�2). (122)

To determine r := r(d) such that (121) holds, we set

hd(x) := � exp(2x ln(2)) + d(x+ 1) ln(2) + x.

Then h

0
d(x) = �2 ln(2) exp(2x ln(2)) + d ln(2) + 1, and, since hd(x) ! �1 as x ! +1, hd has a

unique global maximum at

x̃ :=
1

2 ln(2)
ln

✓

d ln(2) + 1
2 ln(2)

◆

.

Note that hd(x̃) > 0. Therefore, we look for r � x̃ such that hd(r) < 0, and then (121) follows. We
make the ansatz r =: sx̃ with s � 1, and use the abbreviation ad := d ln(2) and b := 2 ln(2). Then

hd(sx̃) = �
✓

ad + 1
b

◆s

+
s

b

ln

✓

ad + 1
b

◆

(ad + 1) + ad. (123)

If d = 1, . . . , 10, it su�ces to choose s = 6. If d � 10, we set

h̃d(s) := �
✓

ad + 1
b

◆s

+
(ad + 1)

b

✓

s ln

✓

ad + 1
b

◆

+ b

◆

� hd(sx̃).

Now we set

s(d) := max

⇢

2,
1 + 2 ln(d/2)
ln(d/2)� 1

�

,

and estimate very roughly as follows: Since ln(ad+1

b )  ad+1

b and b  2ad+1

b , we have

h̃(s)  �
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ad + 1
b

◆

2
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�
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+ s+ 2
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< 0,

since by the choice of s,

ln
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b

◆

� ln(d/2) � s+ 1
s� 2

� ln(s+ 2)
s� 2

.

Note that for d � 10, s(d) is monotonically decreasing. Therefore, s(d)  s(10)  7, and with
r(d) � 7x̃ the assertion follows. ut

We now turn to (121) and use r as obtained in Lemma 10. By (122), it su�ces to choose ` > 0 such
that

2d`�r(d)(1� 2
e

) > e,

which holds for

` � 1
d



3� ln(e2 � 2)
ln(2)

+ r(d)

�

.

In particular ` ! 0 as d ! 1, and thus b̃ ! 1.
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