
Coarse Grid Classification: AMG on Parallel Computers

Michael Griebel1, Bram Metsch1, and Marc Alexander Schweitzer1

Institut für Numerische Simulation, Universität Bonn,
Wegelerstraße 6, 53115 Bonn, Germany

E-mail: {griebel, metsch, schweitzer}@ins.uni-bonn.de

1 Introduction

Many phenomena in science and engineering can be described by a mathematical model.
Such a model describes the relations between the variables and constants that are impor-
tant for this problem, like velocities, forces or material properties. In many cases, these
relationships are expressed by partial differential equations (PDEs).
Often it is not possible to obtain an analytical solution forthese PDEs. Hence, one has to
compute an approximate numerical solution. To this end, theunderlying domain is dis-
cretized using a finite gridΩ. On this grid, the PDE is discretized using finite differences,
finite elements of finite volumes. This results in a sparse (i.e. only few entries per row are
different from zero) linear system of equationsAu = f .
Multigrid Methods (MG)1, 6 are known to be optimal methods for such kind of linear sys-
tems. Algebraic Multigrid Methods (AMG)2, 10 extend the multigrid idea to a purely alge-
braic setting, i.e. the only input they need is the matrixA. They can be used if a geometric
multigrid hierarchy is not available. This flexibility has aprice: A setup phase, has to
be carried out in which the multigrid hierarchy, i.e., the sequence of grids, transfer opera-
tors and coarse grid operators, is constructed automatically from A, before the well-known
multigrid cycle (thesolution phase) can be started.
For linear systems with millions of unknowns, parallel computation is necessary to speed
up the computation and to be able to store the system in the memory. While the paral-
lelization of geometric multigrid and hence the solution phase of algebraic multigrid is
straightforward, the algorithms for creating the coarse grids in AMG are inherently se-
quential.
Various approaches for the parallelization of this step have been proposed over the
years7, 8, 3. In this paper, we briefly describe the Coarse Grid Classification algorithm4, 5, as
well as its extension CGC-ML to very large numbers of processors.

2 Algebraic multigrid

In this section we give a short review of the algebraic multigrid (AMG) method. We
consider a linear systemAu = f , which comes from a discretization of a PDE on a grid
Ω = {1, . . . , N}a, with A = (aij)

N

i,j=1 being a large sparse real matrix,u = (ui)
N

i=1

aWe denote grid points with their respective counting index in any dimension.

1

andf = (fi)
N

i=1 vectors of lengthN . We assume thatA is a symmetric, positive definite
M -matrix or an essentially positive matrix. To be able to solve this equation using the
multigrid scheme6, we need to specify the sequence of coarse grid operatorsAl, transfer
operatorsP l andRl = (P l)T , the smoothing operatorsSl and the sequence of coarse grids
Ωl. To this end, in an algebraic multigrid method, we choose a simple smoothing scheme
Sl, e.g. Gauss–Seidel or Jacobi relaxation. Then, we construct the grids{Ωl}Ll=1, the
transfer operators{P l}L−1

l=1 and the coarse grid operators{Al}Ll=1 in a recursive fashion
depending on the fine grid operatorA = A1 only. This construction is carried out in the
so-called setup phase which consists of three steps: the selection of an appropriate coarse
grid

Ωl+1 := Cl =: Ωl \ F l,

the construction of a stable prolongation operatorP l, and the computation of the Galerkin
coarse grid operatorAl+1 := (P l)T AlP l. In the following, we omit the level indexl
where possible to simplify the notation.

Essential to many AMG schemes is the notion of a strong coupling between the grid
point i and the grid pointj. A grid pointi is calledstrongly coupledto a grid pointj if the
corresponding matrix entryaij is relatively large. In the Ruge–Stüben coarsening (RSC)
algorithm9, 10 for instance the coarsening (see Program 1) is based on the sets

Si := {j 6= i : −aij ≥ α max
k 6=i
|aik|}, ST

i := {j 6= i : i ∈ Sj}, (1)

(typically α = 0.25) which describe the strong connectivity graph of a matrixA. Along
these strong couplings, the smooth parts of the error vary slowly. For an efficient coarse-
grid correction of these parts, interpolation must also follow these couplings. This leads to
three criteria for the choice of the coarse grid,

1. Leti ∈ F . Then for eachj ∈ Si holds eitheri ∈ C or Sj ∩ (C ∩ Si) 6= ∅.
2. For alli ∈ C andj ∈ Si ∪ ST

i holdsj 6∈ C

3. C is a maximal set satisfying these properties.
In general, it is not possible to fulfill all these criteria. We choose to enforce the first one,
as the stability of the interpolation depends on it. The coarsening process is carried out in

Program 1 AmgPhaseI(Ω, S, ST , C, F)

begin
U ← Ω; C ← ∅; F ← ∅;
for i ∈ Ω do λi ← |S

T
i |; od;

while maxi∈U λi 6= 0 do
i← arg maxj∈U λj ; (∗)
C ← C ∪ {i};
for j ∈ ST

i ∩ U do F ← F ∪ {j};
for k ∈ Sj ∩ U do λk ← λk + 1; od;

od;
for j ∈ Si ∩ U do λj ← λj − 1; od;

od;
F ← F ∪ U ;

end

two phases. In the first phase, see Program 1, an independent set C of coarse grid points

2

Figure 1. Resulting coarse grids for a 5-point discretization of the Laplace operator constructed by three different
initial choices. The blue points indicate the respective coarse grid points, the red point indicates the first coarse
grid point chosen.

is determined. Observe that we have a degree of freedom whilechoosing the first coarse
grid point i (see the line indicated by (∗)). After the first phase is carried out, a second
coarsening phase checks that Criterion 1 is satisfied for allpairs i, j ∈ F of fine grid
points. If the conditionSj ∩ (C ∩ Si) 6= ∅ is not fulfilled for a certain pair, then one of
these points is added to the set of coarse grid pointsC.

Note that in Program 1 each pointi chosen for the coarse gridC results in a change of
the weightsλj of all pointsj within two layers around the grid pointi. This shows the se-
quential character of this coarsening algorithm, as the weight updates propagate throughout
the whole domain during the coarsening loop. Hence, the parallelization of Ruge–Stüben-
based AMG schemes is not straightforward.

3 Coarse Grid Classification

As can be seen from Figure 1, different choices for the first coarse grid point yield different
coarse grids. There is no special advantage of using either one of these coarse grids in
a sequential computation. In parallel computations, however, this gives us a degree of
freedom to consistentlymatchthe coarse grids obtained on each processor individually by
the RSC scheme at processor subdomain boundaries. This observation is the starting point
for our coarse grid construction algorithm.

The CGC coarsening scheme employs atwo-stagecoarsening algorithm. First, we
construct multiple coarse grids on each processor domainΩp independently by running
the RSC algorithm multiple times with different initial coarse grid points. After the con-
struction of these coarse grids on all processors, we need toselect exactly one grid for each
processor domain such that the union of these coarse grids forms a suitable coarse grid for
the whole domain.

For details of the first stage, we refer to Program 2. Note thatthe number of iterations
is bounded by the maximal number of strong couplings|Si| over all pointsi ∈ Ωp, which
in turn is bounded by the maximal stencil width. Hence, the number of constructed grids
ngp per processorp is independent of the number of unknownsN and the number of pro-
cessorsP . The later constructed coarse grids may be of inferior quality but the selection
mechanism described in the following will avoid them.
We now have obtainedngp valid coarse grids{C(p),i}

ngp

i=1 on each processorp. To de-
termine which grid to choose on each processor, we constructa directed, weighted graph
G = (V, E) whose vertices represent the candidate coarse grids,

Vp := {C(p),i}i=1,...,ngp
, V := ∪P

p=1Vp.

3

Program 2 CGC(S, ST , ng, {Ci}
ng
i=1, {Fi}

ng
i=1)

for j ← 1 to |Ω| do λj ← |ST
j |; od;

C0 ← ∅; λmax ← arg maxk∈Ω λk;

do
U ← Ω \

S

i≤it Ci;

if maxk∈U λk < λmax then break; fi;

it← it + 1; Fit ← ∅; Cit ← ∅;
do

j ← arg maxk∈U λk;

if λj = 0 then break; fi;

Cit ← Cit ∪ {j}; λj ← 0;

for k ∈ ST
j ∩ U do

Fit ← Fit ∪ {k}; λk ← 0;

for l ∈ Sk ∩ U do λl ← λl + 1; od;
od;
for k ∈ Sj ∩ U do λk ← λk − 1; od;

od;
od
ng ← it;

(a) candidate coarse grids

−18

−18

−18

−18

−18−18

−18 −18

0 0 00

0 0

00

(b) consistent coarse grid

Figure 2. Discretization of the Laplace operator using finite differences. The left figure shows the candidate
coarse grids indicated by different colors, the right figureshows the CGC graph.

The set of edgesE consists of all pairs(v, u), v ∈ Vp, u ∈ Vq such thatq ∈ Sp is a
neighboring processor ofp,

Ep := {∪q∈Sp
∪v∈Vp, u∈Vq

(v, u)}, E := ∪P
p=1Ep,

whereSp is defined as the set of processorsq with pointsj which strongly influence points
i on processorp, i.e.

Sp := {q 6= p : ∃i ∈ Ωp, j ∈ Ωq : j ∈ Si}.

To each edgee = (v, u) we assign a weightγ(e) which measures the quality of the
composed coarse grid ifv andu are chosen to be part of it4. Figure 2 shows an example of
the candidate coarse grids and the respective graph. After we have constructed the graphG

of admissible local grids, we can use it to choose a particular coarse grid for each processor
such that the union of these local grids automatically matches at subdomain boundaries.

4

Program 3 AmgCGCChoose(V, H, C)

begin
C ← ∅; U ← V ;

for v ∈ U do λv ← |Hv|+ |HT
v |; od;

for p ∈ {1, . . . , P} do
if λv = 0 for all v ∈ Vp

then C ← {v | arbitrary v}; U ← U \ Vp; fi;

od;
while U 6= ∅

do
v ← argmaxw∈U λw;

C ← C ∪ {v}; U ← U \ Vp such that v ∈ Vp; λmax ← maxw∈U λw;

for w ∈
`

Hv ∪HT
v

´

∩ U do λw ← λmax + 1; od;
od;

end

To this end, we transfer the whole graph onto a single processor. On this processor, we
choose exactly one nodevp from each subsetVp ⊂ V with the following scheme: We first
define heavy edges,

Hv := ∪q∈Sp
{w |γ(v, w) = max

u∈Vq

γ(v, u)}, andHT
v := {w | v ∈ Hw}.

that indicate which candidate coarse grids can be fitted bestto the coarse grid represented
by v ∈ Vp. We then employ Program 3 to create the global coarse grid. This procedure
takes up toP steps, one for each processor domain, see Program 3 for details. After
running the algorithm, we transfer the choicevp ∈ C ∩ Vp back to processorp.

4 Multilevel Coarse Grid Classification

The main advantage of CGC over other parallel AMG is that the constructed coarse grids
are very close to those a sequential AMG would produce. However, the original CGC
has one major drawback: The graph representing the candidate coarse grids needs to be
transferred to a single processor. For large numbers of processors (P ' 1000) this leads
to large communication costs as well as a significant run-time for the coarse grid selection
algorithm AmgCGCChoose.
To overcome this issue, we have developed the CGC-ML algorithm which carries out the
coarse grid selection procedure in a recursive, multilevelmanner. We construct the graph
G = (V, E) as described in the last section. In addition, we assign a weight to each vertex
which denotes the number of processor subdomains covered bythe coarse grid represented
by this vertex. Naturally, this weight is initialized with1.
We donot transfer the whole graph onto a single processor. Instead, we proceed as follows:

1. We agglomerate the graph on a subset of the processors, seeFigure 3(b). Hence, a part
of the edges (in this case, the vertical edges) do not cross the processor boundaries
any more.

2. We can now employ aheavy matchingon the inner edges of each processor subdo-
main, see Figure 3(c). Note that all edge weights are negative, so in fact the selected
edge is the one with the smallest absolute weight.

5

−18

−18

−18

−18

−18−18

−18 −18

0 0 00

0 0

00

1

1

1

11

1

1

1

(a) original graph

−18

−18

−18

−18

−18−18

−18 −18

0 0 00

0 0

00

1

1

1

11

1

1

1

(b) after agglomeration

−18

−18

−18

−18

−18−18

−18 −18

0 0 00

0 0

00

11

1

1 1

1

1

1

(c) heavy edge match-
ing

−36

2

22

2 −36

0 0

(d) collapsing vertices
and edges

−362

2

2

2−36

0 0

(e) second agglomera-
tion step

4

4

(f) final collapsed
graph

Figure 3. Graph clustering process. The graph is constructed by the CGC algorithm to a 5-point finite-difference
discretization of the Laplace operator, distributed amongfour processors (cp. Figure 2(a)). The numbers in the
vertices denote the number of subdomains covered by the coarse grid which is represented by the respective
vertex. the number at each edge denotes the edge weight.

(a) Initial choice

0 0

−36

−36

(b) First refinement
step

−18

−18

−18

−18

−18−18

−18 −18

0 0 00

0 0

00

(c) Second refinement
step

(d) Composed coarse
grid

Figure 4. CGC-ML refinement process.

3. We collapse the matched vertices and merge the edge sets, see Figure 3(d). Each
vertex now represents a candidate coarse grid on an union of processor subdomains.
Accordingly, we update the vertex weights. The edge set of each vertexu is the union
of the edge sets of the verticesv, w that were collapsed intou: Eu ← Ev ∪ Ew.
However, we never create an edge between two vertices which represent candidate
coarse grids on the same processor subdomain. If two edges are collapsed into the
same edge, we add their edge weights.

4. We proceed matching and collapsing the graph. If no further matching is possible, we
again agglomerate the graph on a smaller subset of processors. If we are already on a
single processor, we stop, see Figure 3(e) – 3(f).

We have now obtained a small set of vertices on a single processor. Now, we choose one
vertexu such that it covers a maximal number of processor subdomainsand mark it, see
Figure 4(a). Then, we mark the verticesv andw that were collapsed intou. We recursively
proceed refining this choice until we have reached the original graph, see 4(b) – 4(c). Now,
on each processor subdomain, the candidate coarse grid represented by the marked vertex

6

 8

 16

 32

 64

 128

 256

 1 4 16 64 256 1024 4096

Ite
ra

tio
ns

number of processors

HMIS
CGC

CGC-ML

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 1 4 16 64 256 1024 4096

O
ve

ra
ll

tim
e

[s
]

number of processors

HMIS
CGC

CGC-ML

Figure 6. Number of iterations (left) and overall timings (right) for the model problem

is selected as coarse grid for this processor subdomain and we obtain a coarse grid for the
global discretization domain as depicted in Figure 4(d).

During this refinement process, we must ensure that one vertex is marked per processor
subdomain on each level of the graph hierarchy. In consequence, this will guarantee that
after finishing the refinement, we have selected one candidate coarse grid on each processor
subdomain. In our implementation, we proceed as follows. Ateach step in the refinement
process where more processors are involved as in the previous step (i.e. a processor ag-
glomeration was performed in the matching phase), we determine if a vertex is marked on
eachprocessor. If this is not the case, we mark the vertex that is most heavily coupled to
the marked vertices on neighboring processors.

Hence, oneachlevel of the AMG multilevel hierarchy, we employ a multi-level graph
coarsening algorithm.

5 Numerical Results

In this section, we present first numerical results obtainedon the JUBL supercomputer. In
particular, we employ AMG as a preconditioner for the conjugate gradient method and we
compare the CGC-ML algorithm with the original CGC algorithm as well as the HMIS
parallel coarsening algorithm3.
We consider an model problem in three spatial dimensions,

1 11000

1

1
0 0.90.1 1

0.01 0.01

Figure 5. Values of the dif-
fusion coefficient for Eq. 2

−∇ · (a∇u) = f (2)

on [0, 1]3 with Dirichlet boundary conditions. The diffusion
coefficienta depends on(x, y, z) as depicted in Figure 5. We
employ a 7-point finite difference scheme to discretize the prob-
lem on31× 31× 31 points per processor subdomain.
As strength threshold in (1), we setα = 0.25. We omit the sec-

ond coarsening pass of the RSC scheme as we use AMG as pre-
conditioner only. Furthermore, we use the modified classical interpolation, see Ref. 7. On
each level of the multigrid hierarchy, we employ a hybrid Gauss-Seidel/Jacobi smoother.
We start the iterations with a zero initial vectoru0. The iteration is stopped if the residual

7

rit = f −Auit drops below10−8 measured in thel2-norm.
In Figure 6 we give the plots of the number of iterations and overall run-time for the consid-
ered parallel AMG schemes. From these plots we see that the CGC-ML algorithm achieves
robust preconditioning for this problem up to thousands of processors. In contrast, the it-
eration numbers for HMIS coarsening increase significantlyand the algorithm does not
converge within1000 steps for more than512 processors. We see an increase of the total
wall time requirements beyond1024 processors which is caused by the slower communica-
tion between the racks. However, The CGC-ML algorithm showsa significantly improved
scale-up behavior compared with the original CGC algorithm.

Acknowledgments

This work was sponsored by the Sonderforschungsbereich 611, Singul̈are Pḧanomene und
Skalierung in mathematischen Modellen, sponsored by theDeutsche Forschungsgemein-
schaft. We want to thank the Forschungszentrum Jülich for computetime on the JUMP
and JUBL supercomputers.

References

1. A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solution to
boundary value problems, In Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, H. Cabannes and R. Teman, (eds.), pages
82–89, New York, Berlin, Heidelberg, Springer Verlag, 1973.

2. A. Brandt, S.F. McCormick, and J. Ruge,Algebraic multigrid (AMG) for automatic
multigrid solution with application to geodetic computations, Institute for Computa-
tional Studies, POB 1852, Fort Collins, Colorado, 1982.

3. H. De Sterck, U. M. Yang, and J.J. HeysReducing complexity in parallel algebraic
multigrid preconditioners, SIAM J. on Matrix Analysis and Applications,27, pp.
1019–1039, 2006.

4. M. Griebel, B. Metsch, D. Oeltz, and M. A. Schweitzer,Coarse grid classification:
A parallel coarsening scheme for algebraic multigrid methods, Numerical Linear
Algebra with Applications,13(2–3), pp.193–214, 2006.

5. M. Griebel, B. Metsch, and M. A. Schweitzer,Coarse grid classification–Part
II: Automatic coarse grid agglomeration for parallel AMG, Preprint 271, Sonder-
forschungsbereich 611, Universität Bonn, 2006.

6. W. Hackbusch,Multi-grid methods and applications, Springer Series in Computa-
tional Mathematics. Springer-Verlag, Berlin, Heidelberg, 1985.

7. V. E. Henson and U. M Yang,BoomerAMG: a parallel algebraic multigrid solver
and preconditioner, Applied Numerical Mathematics41, pp. 155-177, 2002.

8. A. Krechel and K. Stüben,Parallel algebraic multigrid based on subdomain blocking,
Parallel Computing27, pp. 1009-1031, 2001.

9. J. W. Ruge and K. Stüben,Algebraic multigrid (AMG), In Multigrid Methods, S. F.
McCormick (Ed.), Frontiers in Applied Mathematics Vol.5, SIAM, 1986.

10. K. Stüben,Algebraic multigrid (AMG): An introduction with applications, In Multi-
grid, U. Trottenberg, C. W. Oosterlee, and A. Schüller, pages 413–532, Academic
Press, 2001.

8

